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Abstract. In this article we introduce the problem of identity inference
as a generalization of the re-identification problem. Identity inference
is applicable in situations where a large number of unknown persons
must be identified without knowing a priori that groups of test images
represent the same individual. Standard single- and multi-shot person
re-identification are special cases of our formulation. We present an ap-
proach to solving identity inference problems using a Conditional Ran-
dom Field (CRF) to model identity inference as a labeling problem in
the CRF. The CRF model ensures that the final labeling gives similar la-
bels to detections that are similar in feature space, and is flexible enough
to incorporate constraints in the temporal and spatial domains. Exper-
imental results are given on the ETHZ dataset. Our approach yields
state-of-the-art performance for the multi-shot re-identification task and
promising results for more general identity inference problems.

1 Introduction

This is a pre-print version of this publication. The final version can be obtained at:
http://link.springer.com/chapter/10.1007%2F978-3-642-33863-2_44

Person re-identification is traditionally defined as the recognition of an in-
dividual at different times, over different camera views and/or locations, and
considering a large number of candidate individuals. It is a standard component
of multi-camera surveillance systems as it is a way to associate multiple obser-
vations of the same individual over time. Particularly in scenarios in which the
long-term behavior of persons must be characterized, accurate re-identification is
essential. In realistic, wide-area surveillance scenarios such as airports, metro and
train stations, re-identification systems should be capable of robustly associating
a unique identity with hundreds, if not thousands, of individual observations.

Re-identification performance is usually evaluated as a retrieval problem.
Given a gallery consisting of a number of known individuals and images of each,
for each test image or group of test images of an unknown person the goal
of re-identification is to return a ranked list of individuals from the gallery.
Configurations of the re-identification problem are generally classified according
to how much group structure is available in the gallery and test image sets. In a
single-shot image set there is no grouping information availabled. Though there
might be multiple images of an individual, there is no knowledge of which images
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correspond to that person. In a multi-shot image set, on the other hand, there
is explicit grouping information available. That is, it is known which images
correspond to the same individual.

The classification of re-identification scenarios into multi- and single-shot
configurations is useful for establishing benchmarks and standardized datasets
for experimentation on person re-identification. However, these scenarios are
not particularly realistic with respect to some real-world application scenarios.
In video surveillance scenarios, for example, it is more common to have a few
individuals of interest and to desire that all occurrences of those individuals
be labeled. In this case the number of unlabeled test images to re-identify is
typically much larger than the number of gallery images available.

In this article we propose a generalization of person re-identification which we
call identity inference. The identity inference formulation is expressive enough
to represent existing single- and multi-shot scenarios, while at the same time
also modeling a larger class of problems not discussed in the literature. We also
propose a CRF-based approach to solving identity inference problems. Our model
is able to efficiently and accurately solve a broad range of identity inference
problems, including existing person re-identification scenarios as well as more
difficult tasks involving very many unlabeled test images.

2 Related work

The majority of existing research on the person re-identification problem has
concentrated on the development of sophisticated features for describing the
visual appearance of targets. In [1] were introduced discriminative appearance-
based models using Partial Least Squares (PLS) over texture, gradients and
color features. The authors of [2] use an ensemble of local features learned using
a boosting procedure, while in [3] the authors use a covariance matrix of features
computed in a grid of overlapping cells. The SDALF descriptor introduced in [4]
exploits axis symmetry and asymmetry and represents each part of a person by a
weighted color histogram, maximally stable color regions and texture information
from recurrent high-structured patches. In [5] the authors fit a Custom Pictorial
Structure (CPS) model consisting of head, chest, thighs and legs part descriptors
using color histograms and Maximally Stable Color Region (MSCR). The Global
Color Context (GCC) of [6] uses a quantization of color into color words and
then builds a color context modeling the self-similarity for each word using a
polar grid. The Histogram Plus Epitome (HPE) approach in [7] represents a
person by a global mean color histogram and recurrent local patterns through
epitomic analysis.

The approaches mentioned above concentrate on feature representation and
not specifically on the classification or ranking technique. And approach which
does concentrate specifically on the ranking approach is the Ensemble RankSVM
technique of [8], which learns a ranking SVM model to solve the single-shot re-
identification problem.
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Fig. 1: Re-identification and identity-inference protocols. Though the authors
of [6] use “single” to describe their test sets, they only use one image per person.

We believe that in realistic scenarios many unlabeled images will be available
while only few detections with known identities will be given, which is a scenario
not covered by the standard classification of single- and multi-shot cases. We pro-
pose a CRF model that is able to encode a “soft grouping” property of unlabeled
images. Our application of CRFs to identity inference is similar in spirit to re-
cent work using CRFs for multi-target tracking [9]. However, to the best of our
knowledge CRFs have not been directly applied to the re-identification problem
and in this article we explore their use on identity inference as formulated in
next section.

3 Identity inference as generalization of re-identification

In this section we give a formal definition of the re-identification and identity in-
ference problems. The literature on person re-identification covers many different
configurations of gallery and test images. We consider each in turn and show how
each can be represented as an instance of our definition of re-identification. A
summary of the different protocols with corresponding works is given in figure 1.

Let L = {1, . . . N} be a label set for a re-identification scenario, where each
element represents a unique individual appearing in a video sequence or collec-
tion of sequences. We assume that there are a number of instances (images) of
individuals from L detected in a video collection:

I = {xi | i = 1 . . . D} .

We assume that each image xi of an individual is represented by a feature vector
xi ≡ x(xi) and that the label corresponding to instance xi is given by yi ≡ y(xi).

An instance of a re-identification problem, represented as a tupleR = (X ,Z),
is completely characterized by its gallery and test image sets (X and Z, respec-
tively). Formally, the gallery images are defined as:

X = {Xj | j = 1 . . . N} ,where Xj ⊂ {x | y(x) = j} .

That is, for each individual i, a subset of all available images is chosen to form
his gallery: Xi. The set of test images is defined as:

Z = {Zj |j = 1 . . .M} ⊂ P(I),
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where P is the powerset operator (i.e. P(I) is the set of all subsets of I). We
further require for all Zj ∈ Z that x, x′ ∈ Zj ⇒ y(x) = y(x′) (sets in Z have
homogeneous labels), and Zj ∈ Z ⇒ Zj ∩ Xi = ∅,∀i ∈ {1 . . . N} (the test and
gallery sets are disjoint). A solution to an instance of a re-identification problem
is a mapping from the test images Z to the set of all permutations of L.

3.1 Re-identification scenarios

Single-versus-all re-identification (SvsAll) is often referred to as simply
single-shot re-identification or single-versus-single (SvsS) but could better be de-
scribed as single-versus-all (SvsAll) 1 re-identification, see figure 1. In the SvsAll
re-identification scenario a single gallery images is given for each individual, and
all remaining instances of each individual are used for testing: M = D−N . For-
mally, a single-versus-all re-identification problem is a tuple RSvsAll = (X ,Z),
where:

Xj = {x} for some x ∈ {x | y(x) = j} , and

Zj = {{x} | x ∈ I \ Xj and y(x) = j}

Multi-versus-single shot re-identification (MvsS) is defined usingG gallery
images of each person, while each of the test sets Zj contains only a single im-
age. In this case M = N , as there are exactly as many partial test sets Zj as
persons depicted in the gallery. Formally, a MvsS re-identification problem is a
tuple RMvsS = (X ,Z), where:

Xj ⊂ {x | y(x) = j} and |Xj | = G ∀j and

Zj = {x} for some x /∈ Xj s.t. y(x) = j.

The MvsS configuration is not precisely a generalization of the SvsAll person
re-identification problem in that, after selecting G gallery images for each indi-
vidual, only a single test image is selected to form the test sets Zj .

Multi-versus-multi shot re-identification (MvsM) is the case in which
the gallery and test sets of each person both have G images. Formally, a MvsM
re-identification problem is a tuple RMvsM = (X ,Z), where:

Xj ⊂ {x | y(x) = j} and |Xj | = G ∀j and

Zj ⊂ {x | y(x) = j and x /∈ Xj} and |Zj | = G ∀j.

The goal in MvsM re-identification is to re-identify each group of test images,
leveraging the knowledge that images in each group are all of the same individual.

1 We use the SvsAll terminology as the SvsS terminology could be (mis-)interpreted
as in [6] in which only a single image was selected for each individual in the test set.
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3.2 Identity inference

Identity inference addresses the problem of having few labeled images while
desiring to label many unknown images without explicit knowledge that groups
of images represent the same individual. The formulation of the single-versus-
all re-identification falls within the scope of identity inference, but neither the
multi-versus-single nor the multi-versus-multi formulations are a generalization
of this case to multiple gallery images. In the MvsS and MvsM cases the test
set is either a singleton for each person (MvsS) or a group of images (MvsM)
of the same size as the gallery image set for each person. Identity inference
could be described as a multi-versus-all configuration. Formally, it is a tuple
RMvsAll = (X ,Z), where:

Xj ⊂ {x | y(x) = j} and |Xj | = G and

Zj = {{x} | x ∈ I \ Xj and y(x) = j}

In instances of identity inference a set of G gallery images are chosen for each
individual. Each remaining images of each individual is then used as an element
of the test set without any identity grouping information. As in the SvsAll case,
the test images sets are all singletons.

4 A CRF model for identity inference

Conditional Random Fields (CRFs) have been used to model the statistical
structure of problems such as semantic image segmentation [10], and stereo
matching [11]. In this section we show how we model the identity inference
problem as a minimum energy labeling problem in a CRF.

A CRF is defined by a graph G = (V, E), a set of random variables Y =
{Yj | j = 1 . . . |V |} which represent the statistical structure of the problem be-
ing modelled, and a set of possible labels L. The vertices V index the random
variables in Y and the edges E encode the statistical dependence relations be-
tween the random variables. The labeling problem is then to find an assignment
of labels to nodes that minimizes an energy function E over possible labelings

y∗ = (y∗i )
|V |
i=1: ỹ = arg miny∗ E(y∗). The energy function E(y∗) is defined as:

E(y∗) =
∑
i∈V

φi(y
∗
i ) + λ

∑
(i,j)∈E

ψij(y
∗
i , y
∗
j ), (1)

where φi(y
∗
i ) is a unary data potential encoding the cost of assigning label y∗i

to vertex i and ψij(y
∗
i , y
∗
j ) is a binary smoothness potential representing the

conditional cost of assigning labels y∗i and y∗j respectively to vertices i and j. The
parameter λ in equation (1) controls the tradeoff between data and smoothness
costs. Given an instance of a CRF, there exist very efficient algorithms for finding
the optimal labeling ỹ using, for example, graph cuts [12, 13].

We can map an identity inference problem R = (X ,Z) onto a CRF by
defining the vertex and edge sets V and E in terms of the gallery and test image
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sets defined by X and Z. We have found two configurations of vertices and
edges to be useful for solving identity inference problems. The first uses vertices
to represent groups of images in the test set Z and is particularly useful for
modeling MvsM re-identification problems:

V =
N⋃
i=1

Zi and E = {(xi, xj) | xi, xj ∈ Zl for some l} .

The edge topology in this CRF is completely determined by the group structure
as expressed by the Zj .

When no identity grouping information is available for the test set, as in the
general identity inference case as well as in SvsAll re-identification, we instead
use the following formulation of the CRF:

V = I and E =
⋃
xi∈V

{(xi, xj) | xj ∈ kNN(xi)} ,

where the kNN(xi) maps an image to its k most similar images in feature space.
The topology of this CRF formulation, in the absence of explicit group informa-
tion, uses feature similarity to form connections between nodes.

The unary data potential determines the cost of assigning label y∗i to vertex
i given x(xi), the observed feature representation of image xi. It is proportional
to the minimum L1-distance between the feature representation of image xi and
any gallery image of individual y∗i . We define it as:

φi(y
∗
i ) =

{
1 if xi ∈ X and y∗i 6= y(xi)

minx∈Xy∗
i
||x(x)− x(xi)|| otherwise.

If a vertex corresponds to a gallery image, its data potential is 1 for every
incorrect label and zero for the correct one.

Without explicit neighborhood topology given by identity groups, we use the
smoothness potential to encourage similar detections to share the same labels:

ψij(y
∗
i , y
∗
j ) = wij min

x∈Xy∗
i

x′∈Xy∗
j

||x(x)− x(x′)||. (2)

This smoothness potential ensures local consistency between labels in neighbor-
ing nodes: the more similar two labels are in terms of the available gallery images
for them, the lower the cost for them to be labeled the same in the CRF. The
weighting factors wij allow the smoothness potential between nodes i and j to
be flexibly controlled according to the problem at hand.

5 Experimental results

For evaluating identity inference we are especially interested in test scenarios
where there are many unlabeled images of each test subject. For this reason, we
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Fig. 2: MvsM re-identification accuracy. Note that these are not CMC curves,
but are Rank-1 classification accuracies over varying gallery and test set sizes.

selected the publicly available ETHZ [1] dataset which consists of three video
sequences, because on average each person appears in more than 50 images.
This dataset is also interesting because the frame number of each detection is
available and can therefore be incorporated into our CRF model as a temporal
constraint.

As feature representation we compute Hue-SIFT [14] features on a dense
grid, quantize them to a vocabulary of 512 visual words and group them into
cells of a 1×6 cell spatial pyramid [15]. In all experiments on a specific ETHZ
sequence, the codebook for the visual vocabulary was learned through k-means
clustering on features from the remaining two ETHZ sequences. The choice of six
horizontal stripes for the spatial pyramid representation is similar to the choice
made in [8]. We should note that the CRF model we propose is orthogonal to
the choice of feature descriptor and most descriptors discussed in the literature
could be used in our framework.

5.1 Re-identification

Here we apply our CRF framework to solve MvsM re-identification problems. In
these experiments we fix λ = 1 in the energy function of equation (1) and evaluate
performance for galleries varying in size over 2, 5 and 10 images per person. For
each configuration, we randomly select the gallery and test images and average
performance over ten trials. Note that grouping information in the test set is
explicitly encoded in the CRF: edges only link test images that correspond to
the same individual. Results on MvsM person re-identification are presented in
figure 2. We compare our results, which we refer to as GCReID for “Graph Cut
Re-Identification”, with the published results of SDALF [4] and HPE [7]. The
NN curve in figure 2 corresponds to labeling each test image with the nearest
gallery image label without exploiting group knowledge, while the GroupNN
approach use this knowledge by setting the label of the group of test images as
the label of the model which distance to any of these test images is minimal.

The results in figure 2 show that, by using the CRF we can ensure a more
consistent labeling especially when having a higher number of test images, thus
outperforming state-of-the-art methods even though our descriptor is less sophis-
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Fig. 3: Identity inference accuracy on ETHZ datasets.

ticated. The use of the CRF to enforce labeling consistency allows our approach
to outperform simpler, ad hoc reasoning about group similarity (see the results
of the GroupNN method). We also note that, while the approach of SDALF [4]
computes an accumulated single descriptor from multiple gallery images, we
keep the multiple appearances in our model. This, in combination with the in-
ference in our CRF framework, enables us to obtain extremely good results on
the ETHZ1 dataset (figure 2a). While other approaches in the literature tend to
have lower results with a growing number of persons our approach seems to be
more robust in these situations.

5.2 Identity inference

In the CRF model proposed in section 4 for identity inference in which no iden-
tity grouping information is available for the test image sets, the local neigh-
borhood structure is determined by the K nearest neighbors to each image in
feature space. For all experiments we set K = 4. For the general identity infer-
ence case, unlike MvsM person re-identification, we have no information about
relationships between test images. We define the weights wij from equation (2)
between vertices i and j in the CRF in terms of feature similarity and a temporal
constraint:

wij = (1− α)(1− ||x(xi)− x(xj)||) + ατij , (3)

where α ∈ [0, 1] is a weighting factor controlling the tradeoff between temporal
and feature similarities, τij is a temporal weighting factor defined as:

τij =

{
1− |fi−fj |τ if |fi − fj | ≤ τ
0 otherwise,

(4)

where fi and fj are the frame numbers in which detections i and j occurred,
respectively, and τ is a threshold limiting the temporal influence to a finite
number of frames. In preliminary experiments we found τ = 25 to work well
for a variety of configurations and we use this temporal window in all of our
reported results. Similarly, we use a value of α = 0.3 which places more attention
on similarity in feature space. The results in figure 3 are given for λ set to 5.
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Fig. 4: Identity inference results (SvsAll). First row: test image, second row:
incorrect NN result, third row: correct result given by GCIdInf.

In identity inference, gallery images are randomly selected and all remaining
images define the test set. Results are averaged over 10 trials as before. Using
our CRF framework clearly improves accuracy over the simple NN model. The
best configuration is T-GCIDInf which uses feature similarity-weighted edges
with temporal constraints, yielding an average improvement of 15% over the
three datasets with respect to nearest-neighbor labeling. Our approach permits
us to label a large number of unknown images using only few gallery images
for each person. For example, on the ETHZ3 dataset we are able to correctly
label 1596 out of 1706 test images using only 2 model images per person. The
robustness of our method with respect to occlusions and illumination changes is
shown in the qualitative results shown in figure 4. The CRF approach proposed
yields correct labels even in strongly occluded cases thanks to the neighborhood
edges connecting it to less occluded, yet similar, images.

6 Discussion

In this paper we have introduced the identity inference problem which we pro-
pose as a generalization of the standard person re-identification problem de-
scribed in the literature. Identity inference can be thought of as a generalization
of the single-versus-all shot case of person re-identification, and at the same
time as a relaxation of the multi-versus-multi shot case. Instances of identity
inference problems do not require hard knowledge about relationships between
test images (e.g. that they correspond to the same individual). We have also
proposed a CRF-based approach to solving identity inference problems. Our
solution uses feature space and temporal (when available) similarity to define
the neighborhood topology in the CRF. Our experimental results show that the
CRF approach can efficiently solve standard re-identification tasks, achieving
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classification performance comparable to state-of-the-art Rank-1 results in the
literature. The CRF model can also be used to solve more general identity in-
ference problems in which no hard grouping information and very many test
images are present in the test set. Our current work concentrates on exploring
more powerful descriptors and more realistic configurations for identity inference
in the real world. To this end we are also working on developing a multi-camera
dataset for identity inference.
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