

Multi-Target Data Association using Sparse Reconstruction

Andrew D. Bagdanov, Alberto Del Bimbo, Dario Di Fina, Svebor Karaman, Giuseppe Lisanti, Iacopo Masi {dario.difina, svebor.karaman}@unifi.it {baqdanov,delbimbo,lisanti,masi}@dsi.unifi.it

INTRODUCTION

- Video surveillance is an important and fundamental application area in computer vision. Visual object tracking is one of the most important tasks related to this.
- Multiple target tracking is to follow targets in an uncontrolled environment while handling problems such as occlusion, similarity in target appearance and crowded scenes.

- The data association (DA) problem is one of the main hurdles to be overcome in multiple target tracking [1].
- It consists of finding the correct assignment between existing tracklets and the set of new observations extracted from the current frame of a sequence.

SPARSE DISCRIMINATIVE BASIS EXPANSION

Discriminative Basis Formation

- Define the sub-basis corresponding to target k as the concatenation of the n feature descriptors of all associated observations: $\mathbf{B}_k = [\mathbf{f}(y_{k,1}), \mathbf{f}(y_{k,2}), \dots, \mathbf{f}(y_{k,n})]$
- If there are K targets in the scene, the **discriminative basis** B is obtained by concatenating these sub-bases, which is hence composed of $N = K \cdot n$ feature vectors.
- Our approach is based on solving an ℓ_1 -regularized optimization problem:

 $\min_{\alpha} \|\mathbf{f}(y_t^i) - \mathbf{B}\alpha\|_2^2 + \lambda \|\alpha\|_1,$

- α is a sparse projection vector composed of N coefficients that indicate how to reconstruct a new observation $f(y_t^i)$ using a linear combination of the sample vectors in **B**.
- $\lambda \in \mathbb{R}^+$ is used to control the sparsity of α .
- To define the target *appearance error* we use the residual ε_k^i for each (k, i):

 $\varepsilon_k^i = \|\mathbf{f}(y_t^i) - \mathbf{B}_k \alpha_k\|_2.$

Spatial Information

- Our approach attempts to reconstruct new observations using a regularized linear combination of tracklets already identified.
- It uses ℓ_1 -regularized basis expansions to determine the most likely assignment between tracked targets and new observations.

RELATED WORK

State of the Art for Multi-Target Data Association

- Nearest Neighbor Standard Filter (NNSF): the simple and widely applied approach to multi-target data association.
- JPDAF and Baysian Filters: maintain a statistical model of target motion at each time step.
- Markov Chain Monte Carlo Data Association (MCMCDA): uses random sampling to explore the detection/tracklet association space.

Sparse Methods

- Sparse methods [3, 4] are becoming steadily more popular in the computer vision community.
- These approaches exploit the hypothesis that an arbitrary signal can be reconstructed using a sparse combination of basis vectors.
- Sparse reconstruction has recently been applied to the single-target tracking problem [3].
- In a discriminative classification setting, sparse reconstruction has also been applied to face recognition problems [4].

• We use the **VOC Score** between tracklets and new observations to incorporate spatial proximity:

$$s_k^i = \frac{A_k \bigcap A_i}{A_k \bigcup A_i}, s_k^i \in [0, 1].$$

• A_k is the bounding box area of the last observation y_{τ}^l associated with the tracklet ω_k , and A_i is the area of the new observation y_t^i , where $\tau \in [t-5, t-1]$.

Association Error

The **total association error** a_k^i is defined as a linear combination of the two errors:

 $a_{k}^{i} = (1 - \gamma)\varepsilon_{k}^{i} + \gamma(1 - s_{k}^{i}), \ \forall (k, i) \in [1, K] \times [1, L].$

Basis Update

• During the tracking process the discriminative basis may **become outdated** and thus no longer describe well a particular target k.

7

8 end while

- **Basis update** is performed by exploiting the associations occurring in a temporal window of W frames.
- For each tracklet we add at most the η best associated observations to the corresponding sub-basis.

DA ALGORITHM

 $\Omega_t = \{\Omega_t \setminus \omega_{t,\hat{k}}\}$;

Alg	Algorithm 1: Data association algorithm					
Data : B , Ω , y_t and γ						
1 \	1 $\Omega_t = \Omega$: local set of tracklets ;					
2 compute $\mathbf{f}(y_t^i) \forall y_t^i$; $s_k^i, \varepsilon_k^i, a_k^i \forall i, \forall k$;						
3 while $\Omega_t \neq \emptyset \land y_t \neq \widehat{\emptyset}$ do						
4	$(\hat{k},\hat{i}) = \arg\min_{k,i} a_k^i;$					
5	$\omega_{\hat{k}}=\omega_{\hat{k}}\cup\{y_t^{\hat{i}}\}$;					
6	$y_t = \{y_t \setminus y_t^{\hat{i}}\}$;					

ISOLATING THE DATA ASSOCIATION PROBLEM

Multi-Target Data Association Problems

This work is focused only on the *pure data association* problem. We want:

- a representation that discriminatively models each target through time.
- an accurate rule for discerning each subject from the others in the scene.

Problem Formalization

- We consider a video stream Ψ whose duration is $T \in \mathbb{N}^+$ seconds, and that K different targets moving in the scene can be identified.
- Each $k \in K$ is observable in the time interval $[t_{ks}, t_{ke}] \subset [1, T]$, where t_{ks} is time of the first appearance and t_{ke} is the last appearance or exit time (hence $t_{ks} < t_{ke}$).
- We assume that a perfect detector lets us obtain a set of observations y_t with a cardinality $L \in \mathbb{N}$,

 $Y = \{y_t : t \in [1, T]\}, y_t = \{y_t^i\}_{i=1}^L, \forall t.$

- A tracking algorithm has the aim of defining a set of tracklets: $\Omega = \{\omega_k : k \in [1, K]\}$.
- Each tracklet ω_k will be characterized by a sub-set of observations, where each observation of ω_k belongs to a distinct time instant:

 $\omega_k = \{y_t^i : i \in [1, L], \forall t \in [t_{ks}, t_{ke}]\} \subseteq Y.$

• An observation y_t^i can only be associated with a single tracklet ω_k , $\omega_k \cap \omega_j = \emptyset, \forall k, j \in [1, L]$ if $k \neq j$.

Assumptions

 $0 \frac{1}{0} \frac{1}{0} \frac{1}{5} \frac{1}{10} \frac{1}{15} \frac{1}{20} \frac{1}{25} \frac{1}{30} \frac{1}{35} \frac{1}{40} \frac{1}{35} \frac{1}{40} \frac{1}{35} \frac{1}{40} \frac{1}{5} \frac{1}{5}$

An example of a regularized sparse basis expansion and the resulting α projection vector.

EXPERIMENTAL RESULTS

Feature and Dataset

- We use the "*s*2.*l*1-*view*01" sequence of the PETS 2009 dataset to test our approach.
- In the figure on the left, we show three instances of each tracked subject in the PETS dataset sequence.
- In the figure on the right, we show an example of the feature representation we use. We extract an **RGB** histogram for each cell of the three level spatial pyramid shown in figure.

Data Association Performance

Target 1	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	Target 1	.16 .04 .31 .13	3.10	.08 .00	.00 <mark>.10 .08</mark> .00).00 Ta	rget 1	.72 .00 .07 .00 <mark>.19</mark> .01 .00 .00 .00 .00 .00
Target 2	.00 .00 .00 .00 .00 .34 .00 .00 <mark>.46</mark> .00 .00	Target 2	.01 .00 .08 .01 .0	1 <mark>.17</mark>	.01 .00	00. 00. 00. 00.	0.00 Ta	rget 2	.00 .00 <mark>.00 .00 .00 .00 .00 .00 .00 .00</mark>
Target 3	.00 .00 .86 .00 <mark>.11</mark> .00 <mark>.03</mark> .00 .00 .00 .00	Target 3	.00 .07 .10 .00	0.07	.02 <mark>.13</mark>	3 .00 <mark>.31</mark> .00	0.00 Ta	rget 3	.00 .00 <mark>.00 .00 .22</mark> .00 .00 <mark>.07 .05</mark> .00 .00
Target 4	.01 <mark>.19</mark> .00 <mark>.25</mark> .02 .00 <mark>.07 .46</mark> .00 .00 .00	Target 4	.00 <mark>.36</mark> .04 .1	2 .47	.00 .00	0.00.01.00	0.00 Ta	rget 4	.00 .00 .00 .00 <mark>.00 .00 .00 .00 .00 .00</mark>
Target 5	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	Target 5	.00 .03 .04 .03	3 .10	.36 .30	00. <mark>80.</mark> 00. <mark>6</mark>	0.00 Ta	rget 5	.01 <mark>.03 .04</mark> .00 <mark>.42</mark> .03 <mark>.36 .12</mark> .00 .00 .00
Target 6	.00 .00 <mark>.03 .00 .00 .47 .05</mark> .00 <mark>.45</mark> .00 .00	Target 6	<mark>.04</mark> .00 <mark>.08 .4</mark>	1.05	.01 <mark>.27</mark>	<mark>7</mark> .00 <mark>.14</mark> .00	0.00 Ta	rget 6	.01 <mark>.13</mark> .00 .00 <mark>.02 .76</mark> .00 .02 .05 .00 .00
Target 7	.00 .00 .00 .00 .00 .00 1.0 .00 .00 .00	Target 7	.65 .00 .00 .00	00. <mark>8</mark>	.00 <mark>.28</mark>	<mark>3</mark> .00 .00 .00	0.00 Ta	rget 7	.00 .00 <mark>.29</mark> .00 .00 .00 <mark>.71</mark> .00 .00 .00 .00
Target 8	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	Target 8	.00 .00 .00 .00	00.0	.00 .00	0 1.0 .00 .00	0.00 Ta	rget 8	.00 .01 .00 .00 .00 .00 <mark>.06 .92</mark> .00 .00 .00
Target 9	.00 .00 <mark>.09 .00 .00 .00 .06 .21</mark> .00 .09 .00 .00	Target 9	.00 .00 .00 .00	00. <mark>6</mark>	.05 .00	0. 00 <mark>.59</mark> .00	0.00 Ta	rget 9	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Target 10	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	Target 10	.00 .00 .00 .00	00. <mark>8</mark>	.00 .02	2 .03 .00 .77	.00 Tar	get 10	.00 .01 .00 .00 <mark>.14</mark> .00 .00 .81 .00
Target 11	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	Target 11	.00 .00 .00 .00	00.0	.00 .00	00. 00. 00. 00	1.0 Tar	get 11	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	A A A A A A A A A A A A A A A A A A A		Arger arger St St G))))))))))))))		A A

- We assume perfect detections and perfect bootstrapping of appearance models in order to isolate data association performance from the complexities of multi-target tracking.
- We assume that *n* observations have already been associated with the *k*-th tracked target.

BIBLIOGRAPHY

References

[1] Y. Bar-Shalom and T.E. Fortmann. *Tracking and Data Association*. Academic-Press, Boston, 1988.

- Michael D. Breitenstein, Fabian Reichlin, Bastian Leibe, Esther Koller-Meier, and Luc Van Gool. Online multiperson tracking-by-detection from a single, uncalibrated camera. IEEE Trans. Pattern Anal. Mach. Intell., 33(9):1820–1833, September 2011.
- Xue Mei and Haibin Ling. Robust visual tracking using 11 minimization. In Computer Vision, 2009 IEEE 12th International Conference on, pages 1436 –1443, 29 2009-oct. 2 2009.
- John Wright, Allen Yang, Arvind Ganesh, Shankar Sastry, and Yi Ma. Robust face recognition via sparse representation. *IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)*, 31(2), February 2009.
- Bo Yang and Ram Nevatia. Online learned discriminative part-based appearance models for multi-human tracking. In *ECCV* (1)'12, pages 484–498, 2012.

Confusion matrices for various parameter settings. Left: $\lambda = 0.7$, $\gamma = 0.5$, no update phase. Center: spatial proximity only with $\gamma = 1$. Right: $\gamma = 0.2$ and $\lambda = 0.1$, basis update with W = 20 and $\eta = 3$.

Comparison with the State-of-the-art

Method	MOTA	Recall	Precision	FN Rate	FP Rate	IDS
Yang [5] PM Only	_	92.8%	95.4%	—	_	0
Yang [5] PM + CFT	-	97.8%	94.8%	-	_	0
Breitenstein et al. [2]	79.7%	-	—	-	_	_
Our ℓ_1 -DA ($\gamma = 0.2$)	82.8%	82.9%	96.2%	13.9%	0.04%	146
Our ℓ_1 -DA ($\gamma = 0.4$)	84.7%	84.8%	98.4%	13.9%	0.02%	60
Our ℓ_1 -DA ($\gamma = 0.8$)	80.5%	80.5%	99.9%	19.4%	0%	4

Results on the "s2.l1-view01" sequence of the PETS 2009 dataset.