

Activities of Daily Living Indexing by Hierarchical HMM for Dementia Diagnostics

<u>Svebor Karaman</u>, Jenny Benois-Pineau – LaBRI, Rémi Mégret – IMS, Yann Gaëstel, Jean-Francois Dartigues - INSERM U.897, University of Bordeaux

Julien Pinquier – IRIT, University of Toulouse

Activities of Daily Living Indexing

- 1. The IMMED Project
- 2. Wearable videos
- 3. Automated analysis of activities
 - 1. Temporal segmentation
 - 2. Description space
 - 3. Activities recognition (HMM)
- 4. Results
- 5. Conclusions and perspectives

1. The IMMED Project

- IMMED: Indexing Multimedia Data from Wearable Sensors for diagnostics and treatment of Dementia.
 - <u>http://immed.labri.fr</u> → Demos: Video
- Ageing society:
 - Growing impact of age-related disorders
 - Dementia, Alzheimer disease...
- Early diagnosis:
 - Bring solutions to patients and relatives in time
 - Delay the loss of autonomy and placement into nursing homes
- The IMMED project is granted by ANR ANR-09-BLAN-0165

1. The IMMED Project

- Instrumental Activities of Daily Living (IADL)
 - Decline in IADL is correlated with future dementia
 PAQUID [Peres'2008]
- IADL analysis:
 - Survey for the patient and relatives \rightarrow subjective answers
- IMMED Project:
 - Observations of IADL with the help of video cameras worn by the patient at home
 - Recording by paramedical staff when visiting the patient
- Objective observations of the evolution of disease
- Adjustment of the therapy for each patient

2. Wearable videos

- Related works:
- SenseCam
 - Images recorded as memory aid [Hodges et al.] "SenseCam: a Retrospective Memory Aid » UBICOMP'2006

- WearCam
 - Camera strapped on the head of young children to help identifying possible deficiencies like for instance, autism
 [Picardi et al.] "WearCam: A Head Wireless Camera for Monitoring Gaze Attention and for the Diagnosis of Developmental Disorders in Young Children" International Symposium on Robot & Human Interactive Communication,
 - 2007

2. Wearable videos

• Video acquisition setup

- Wide angle camera on shoulder
- Non intrusive and easy to use device
- IADL capture: from 40 minutes up to 2,5 hours

2. Wearable videos

- 4 examples of activities recorded with this camera: video
- Making the bed, Washing dishes, Sweeping, Hovering

Contributions

- Framework introduced in *Human Daily Activities Indexing in Videos from Wearable Cameras for Monitoring of Patients with Dementia Diseases*, ICPR'2010.
- In present work, definition of a cross-media feature space: motion, visual and audio features
- Learning of optimal parameter for temporal segmentation
- Experiments to find the optimal feature space
- Experiments on new real-world data

3.1 Temporal Segmentation

- Pre-processing: preliminary step towards activities recognition
- Objectives:
 - Reduce the gap between the amount of data (frames) and the target number of detections (activities)
 - Associate one observation to one viewpoint
- Principle:
 - Use the global motion e.g. ego motion to segment the video in terms of viewpoints
 - One key-frame per segment: temporal center
 - Rough indexes for navigation throughout this long sequence shot
 - Automatic video summary of each new video footage

3.1 Temporal Segmentation

• Complete affine model of global motion (a1, a2, a3, a4, a5, a6)

$$\begin{pmatrix} dx_i \\ dy_i \end{pmatrix} = \begin{pmatrix} a_1 \\ a_4 \end{pmatrix} + \begin{pmatrix} a_2 & a_3 \\ a_5 & a_6 \end{pmatrix} \begin{pmatrix} x_i \\ y_i \end{pmatrix}$$

[Krämer et al.] Camera Motion Detection in the Rough Indexing Paradigm, TREC'2005.

- Principle:
 - Trajectories of corners from global motion model
 - End of segment when at least 3 corners trajectories have reached outbound positions

3.1 Temporal Segmentation

Threshold *t* defined as a percentage *p* of image width *w* p=0.2 ... 0.5

$$t = p \times w$$

IMMED

3.1 Temporal Segmentation Video Summary

- 332 key-frames, 17772 frames initially
- Video summary (6 fps)

Color: MPEG-7 Color Layout Descriptor (CLD):

6 coefficients for luminance, 3 for each chrominance

- For a segment: CLD of the key-frame, $x(CLD) \in \Re^{12}$
- Audio (J. Pinquier and R. André-Obrecht, IRIT)
 - 5 audio classes: speech, music, noise, silence and percussion and periodic sounds
 - 4Hz energy modulation and entropy modulation for speech
 - Number of segments and segment duration from Forward-Backward divergence algorithm for music
 - Energy for silence detection
 - Spectral coefficients for percussion and periodic sounds

- H_{tpe} log-scale histogram of the translation parameters energy Characterizes the global motion strength and aims to distinguish activities with strong or low motion
- $N_e = 5$, $s_h = 0.2$. Feature vectors $x(H_{tpe}, a_1)$ and $x(H_{tpe}, a_4) \in \Re^5$ $H_{tpe}[i] + = 1$ if $\log(a^2) < i \times s_h$ for i = 1 $H_{tpe}[i] + = 1$ if $(i-1) \times s_h \le \log(a^2) < i \times s_h$ for $i = 2..N_e - 1$ $H_{tpe}[i] + = 1$ if $\log(a^2) \ge i \times s_h$ for $i = N_e$
- Histograms are averaged over all frames within the segment

	x(H _{toe} , a ₁)	x(H _{toe} ,a ₄)
Low motion segment	0,87 0,03 0,02 0 0,08	0,93 0,01 0,01 0 0,05
Strong motion segment	0,05 0 0,01 0,11 0,83	0 0 0 0,06 0,94

• H_c: cut histogram. The ith bin of the histogram contains the number of temporal segmentation cuts in the 2ⁱ last frames

- Average histogram over all frames within the segment
- Characterizes the motion history, the strength of motion even outside the current segment

 $2^8\text{=}256 \text{ frames} \rightarrow 8.5\text{s}$

 $x(H_c) \in \Re^8$

- Feature vector fusion: early fusion
 - CLD $\rightarrow x(CLD) \in \Re^{12}$
 - Motion
 - $x(H_{tpe}) \in \Re^{10}$
 - x(H_c) ∈ ℜ⁸
 - Audio
 - $x(Audio) \in \Re^5$
- Final feature vector size: 35 if all descriptors are used $x \in \Re^{35} = (x(CLD), x(H_{tpe},a_1), x(H_{tpe},a_4), x(H_c), x(Audio))$

3.3 Activities recognition

- A two level hierarchical HMM:
- Higher level:
- transition between activities
 - Example activities:
 Washing the dishes, Hovering,
 Making coffee, Making tea...
- Bottom level:
- activity description
 - Activity: HMM with 3/5/7 states
 - Observations model: GMM

3.3 Activities recognition

- Higher level HMM
 - Connectivity of HMM can be defined by personal environment constraints
 - Transitions between activities can be penalized according to an a priori knowledge of most frequent transitions
 - No re-learning of transitions probabilities at this level
 - In this study, the activities are:
 - "making coffee", "making tea", "washing the dishes", "discussing", "reading"
 - and a reject class for all other not relevant events "NR"

3.3 Activities recognition

Bottom level HMM

- Start/End
- \rightarrow Non emitting state
- Observation x only for emitting states q_i
- Transitions probabilities and GMM parameters are learnt by Baum-Welsh algorithm
- A priori fixed number of states
- HMM initialization:
 - Strong loop probability a_{ii}
 - Weak out probability a_{iend}

IMMED

4. Results

- No public database available.
- In this experiments, videos are recorded at the LaBRI:
 - 3 volunteers carrying out some of the activities "making coffee", "making tea", "washing the dishes", "discussing", "reading". Not all activities are present in a video
- 6 videos, 81435 frames, 45 minutes
- Cross validation: learning on all videos but one, remaining one for testing purpose
- Parameters studied:
 - Temporal segmentation threshold
 - Number of states in the activity HMM
 - Description space

4. Results

 Segmentation threshold influence when varying number of states in HMM

Average accuracy as a function of segmentation threshold

4. Results

• Selection of best results after cross-validation:

Description Space	Number of States	Threshold	Accuracy
H _{tpe} Audio	3	0.35	0.75
H _{tpe} CLD	5	0.35	0.75
H _{tpe} CLD Audio	3	0.40	0.74
H _c CLD Audio	7	0.25	0.73
$H_{c} H_{tpe} CLD Audio$	3	0.15	0.73

- Top 10:
 - Descriptors: 7 HtpeAudio, 2 HtpeCLD, 1 HtpeCLDAudio
 - States: 3 "3StatesHMM", 5 "5StatesHMM", 2 "7StatesHMM"
 - Threshold: Between 0.2 and 0.5

IMMED

4. Results

NR/Interest: Max: 0.85 •

Global accuracy: 0.802326 (69 / 86) for HcHtpeAudio with 3 States and 0.25 threshold.

5. Conclusions and perspectives

- Activities of Daily Living Indexing and Motion Based Temporal Segmentation methods have been presented
- Encouraging results. Good discriminative power between interest and not relevant activities. Difficulty of modeling activities which may seems similar in current description space
- Difficulty to obtain videos (no such public databases available)
- Tests on a larger corpus recorded in different patients' home: 10h of videos available (work in progress)
- Mid-level and local descriptors: Object detection
- Activity dependent number of states via Entropy Minimization
- Late fusion with Coupled HMMs

Thank you for your attention.

Questions?

