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1. The IMMED Project 
•  IMMED: Indexing Multimedia Data from Wearable Sensors for 

diagnostics and treatment of Dementia. 

•  http://immed.labri.fr → Demos: Video 

•  Ageing society: 

•  Growing impact of age-related disorders 

•  Dementia, Alzheimer disease… 

•  Early diagnosis: 

•  Bring solutions to patients and relatives in time 

•  Delay the loss of autonomy and placement into nursing 
homes 

•  The IMMED project is granted by ANR - ANR-09-BLAN-0165 
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1. The IMMED Project 
•  Instrumental Activities of Daily Living (IADL) 

•  Decline in IADL is correlated with future dementia 
PAQUID [Peres’2008] 

•  IADL analysis: 

•  Survey for the patient and relatives → subjective answers 

•  IMMED Project: 

•  Observations of IADL with the help of video cameras worn 
by the patient at home 

•  Recording by paramedical staff when visiting the patient 
•  Objective observations of the evolution of disease 

•  Adjustment of the therapy for each patient 
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2. Wearable videos 
•  Related works: 
•  SenseCam 

•  Images recorded as memory aid 
 [Hodges et al.] “SenseCam: a Retrospective  
 Memory Aid » UBICOMP’2006 

•  WearCam 
•  Camera strapped on the head of young children to help 

identifying possible deficiencies like for instance, autism 
 [Picardi et al.] “WearCam: A Head Wireless  
 Camera for Monitoring Gaze Attention and  
 for the Diagnosis of Developmental Disorders 
 in Young Children” International Symposium  
 on Robot & Human Interactive Communication, 
  2007 
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2. Wearable videos 
•  Video acquisition setup 

•  Wide angle camera 
on shoulder 

•  Non intrusive and 
easy to use device 

•  IADL capture: from 
40 minutes up to 
2,5 hours 

(c)	
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2. Wearable videos 
•  4 examples of activities recorded with this camera: video 
•  Making the bed, Washing dishes, Sweeping, Hovering 



 
CBMI’2011 - June 14th 

Contributions 

•  Framework introduced in Human Daily Activities 
Indexing in Videos from Wearable Cameras for 
Monitoring of Patients with Dementia Diseases, 
ICPR’2010. 

•  In present work, definition of a cross-media feature 
space: motion, visual and audio features 

•  Learning of optimal parameter for temporal 
segmentation 

•  Experiments to find the optimal feature space 
•  Experiments on new real-world data 
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3.1 Temporal Segmentation 
•  Pre-processing: preliminary step towards activities recognition 
•  Objectives: 

•  Reduce the gap between the amount of data (frames) and 
the target number of detections (activities) 

•  Associate one observation to one viewpoint 

•  Principle: 

•  Use the global motion e.g. ego motion to segment the video 
in terms of viewpoints 

•  One key-frame per segment: temporal center 

•  Rough indexes for navigation throughout this long sequence 
shot 

•  Automatic video summary of each new video footage 
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•  Complete affine model of global motion (a1, a2, a3, a4, a5, a6) 

 

 

 [Krämer et al.] Camera Motion Detection in the Rough Indexing Paradigm, 
TREC’2005. 

•  Principle: 

•  Trajectories of corners from global motion model 

•  End of segment when at least 3 corners trajectories have 
reached outbound positions 
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3.1 Temporal Segmentation 
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•  Threshold t defined as a percentage p of image width w 
 p=0.2 … 0.5 

 wp=t ×

3.1 Temporal Segmentation 
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3.1 Temporal Segmentation 
Video Summary 

•  332 key-frames, 17772 frames initially 
•  Video summary (6 fps) 
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•  Color: MPEG-7 Color Layout Descriptor (CLD): 

 6 coefficients for luminance, 3 for each chrominance 

•  For a segment: CLD of the key-frame, x(CLD) ∈ ℜ12 
•  Audio (J. Pinquier and R. André-Obrecht, IRIT) 

•  5 audio classes: speech, music, noise, silence and 
percussion and periodic sounds 

•  4Hz energy modulation and entropy modulation for speech 
•  Number of segments and segment duration from Forward-

Backward divergence algorithm for music 
•  Energy for silence detection 
•  Spectral coefficients for percussion and periodic sounds 

3.2 Description space 
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•  Htpe log-scale histogram of the translation parameters energy 

 Characterizes the global motion strength and aims to distinguish 
activities with strong or low motion   

•  Ne = 5, sh = 0.2. Feature vectors x(Htpe,a1) and x(Htpe,a4) ∈ ℜ5 

•  Histograms are averaged over all frames within the segment 

 
x(Htpe, a1) x(Htpe,a4) 

Low motion segment 0,87 0,03 0,02 0 0,08 0,93 0,01 0,01 0 0,05 

Strong motion segment 0,05 0 0,01 0,11 0,83 0 0 0 0,06 0,94  

3.2 Description space 
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• Hc: cut histogram. The ith bin of the histogram contains the number 
of temporal segmentation cuts in the 2i last frames 

  
 Hc[1]=0, Hc[2]=0, Hc[3]=1, Hc[4]=1, Hc[5]=2, Hc[6]=7 

• Average histogram over all frames within the segment 

• Characterizes the motion history, the strength of motion even 
outside the current segment 

28=256 frames → 8.5s 

 x(Hc) ∈ ℜ8 

 

3.2 Description space 
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•  Feature vector fusion: early fusion 
•  CLD → x(CLD) ∈ ℜ12 

•  Motion 
•  x(Htpe) ∈ ℜ10 

•  x(Hc) ∈ ℜ8 

•  Audio 
•  x(Audio) ∈ ℜ5 

•  Final feature vector size: 35 if all descriptors are used 
x ∈ ℜ35 = ( x(CLD), x(Htpe,a1), x(Htpe,a4), x(Hc), x(Audio) ) 

3.2 Description space 
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A two level hierarchical HMM: 

•  Higher level: 
transition between activities 

•  Example activities:  
Washing the dishes, Hovering, 
Making coffee, Making tea... 
 

•  Bottom level:  
activity description 

•  Activity: HMM with 3/5/7 states 
•  Observations model: GMM 

 

3.3 Activities recognition 
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•  Higher level HMM 

•  Connectivity of HMM can be defined by personal environment 
constraints 

•  Transitions between activities can be penalized according to an 
a priori knowledge of most frequent transitions 

•  No re-learning of transitions probabilities at this level 
•  In this study, the activities are: 

•  “making coffee”, “making tea”, “washing the dishes”, 
“discussing”, “reading”  

•  and a reject class for all other not relevant events “NR” 
 

3.3 Activities recognition 
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Bottom level HMM 

•  Start/End  

→ Non emitting state 

•  Observation x only for  
emitting states qi 
•  Transitions probabilities 
and GMM parameters are  
learnt by Baum-Welsh algorithm 
•  A priori fixed number of states 

•  HMM initialization: 

•  Strong loop probability aii 
•  Weak out probability aiend 

 
 
 

3.3 Activities recognition 
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4. Results 
•  No public database available.  
•  In this experiments, videos are recorded at the LaBRI: 

•  3 volunteers carrying out some of the activities “making 
coffee”, “making tea”, “washing the dishes”, “discussing”, 
“reading”. Not all activities are present in a video 

•  6 videos, 81435 frames, 45 minutes 

•  Cross validation: learning on all videos but one, remaining one for 
testing purpose 

•  Parameters studied: 

•  Temporal segmentation threshold 

•  Number of states in the activity HMM 

•  Description space 



 
CBMI’2011 - June 14th 

 
21 

•  Segmentation threshold influence when varying number of states 
in HMM 

4. Results 
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4. Results 
•  Selection of best results after cross-validation: 

•  Top  10:  

•  Descriptors: 7 HtpeAudio, 2 HtpeCLD, 1 HtpeCLDAudio 

•  States: 3 “3StatesHMM”, 5 “5StatesHMM”, 2 “7StatesHMM” 

•  Threshold: Between 0.2 and 0.5 

Description Space Number of States Threshold Accuracy 

Htpe Audio 3 0.35 0.75 

Htpe CLD 5 0.35 0.75 

Htpe CLD Audio 3 0.40 0.74 

Hc CLD Audio 7 0.25 0.73 

Hc Htpe CLD Audio 3 0.15 0.73 
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•  NR/Interest: Max: 0.85 
•  Most interesting 

events are 

detected 

•  Some 

confusion 

between interest 

activities 

•  Semantic activities 

start/end may not be 

really clear 

 

 

4. Results 
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•  Activities of Daily Living Indexing and Motion Based Temporal 
Segmentation methods have been presented 

•  Encouraging results. Good discriminative power between interest 
and not relevant activities. Difficulty of modeling activities which 
may seems similar in current description space 

•  Difficulty to obtain videos (no such public databases available) 

•  Tests on a larger corpus recorded in different patients’ home: 10h 
of videos available (work in progress) 

•  Mid-level and local descriptors: Object detection 

•  Activity dependent number of states via Entropy Minimization 

•  Late fusion with Coupled HMMs 

 

5. Conclusions and perspectives 
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Thank you for your attention. 

 

Questions? 

 


