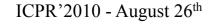
Human Daily Activities Indexing in Videos from Wearable Cameras for Monitoring of Patients with Dementia Diseases

Svebor Karaman, Jenny Benois-Pineau - LaBRI Rémi Megret, Vladislavs Dovgalecs – IMS Yann Gaëstel, Jean-Francois Dartigues - INSERM U.897

University of Bordeaux

Human Daily Activities Indexing in Videos

- 1. The IMMED Project
- 2. Wearable videos
- 3. Automated analysis of activities
 - 1. Temporal segmentation
 - 2. Description space
 - 3. Activities recognition (HMM)
- 4. Results
- 5. Conclusions and perspectives

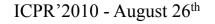


1. The IMMED Project

- IMMED: Indexing Multimedia Data from Wearable Sensors for diagnostics and treatment of Dementia.
 - <u>http://immed.labri.fr</u> → Demos: Video
- Ageing society:
 - Growing impact of age-related disorders
 - Dementia, Alzheimer disease...
- Early diagnosis:
 - Bring solutions to patients and relatives in time
 - Delay the loss of autonomy and placement into nursing homes
- The IMMED project is granted by ANR ANR-09-BLAN-0165

1. The IMMED Project

- Instrumental Activities of Daily Living (IADL)
 - Decline in IADL is correlated with future dementia
 PAQUID [Peres'2008]
- IADL analysis:
 - Survey for the patient and relatives \rightarrow subjective answers
- IMMED Project:
 - Observations of IADL with the help of video cameras worn by the patient at home
- Objective observations of the evolution of disease
- Adjustment of the therapy for each patient



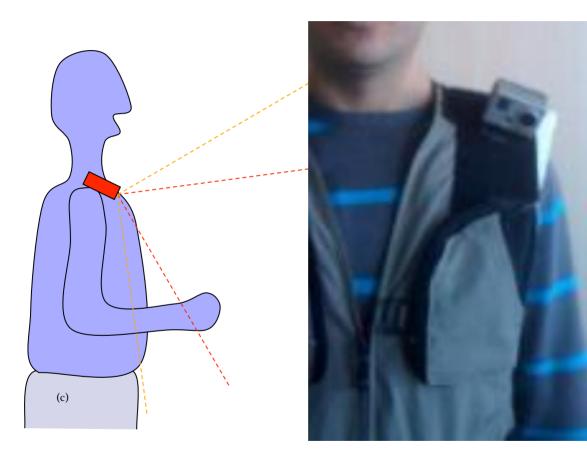
2. Wearable videos

- Related works:
- SenseCam
 - Images recorded as memory aid [Hodges et al.] "SenseCam: a Retrospective Memory Aid » UBICOMP'2006

- WearCam
 - Camera strapped on the head of young children to help identifying possible deficiencies like for instance, autism
 [Picardi et al.] "WearCam: A Head Wireless Camera for Monitoring Gaze Attention and for the Diagnosis of Developmental Disorders in Young Children" International Symposium on Robot & Human Interactive Communication,
 - 2007

2. Wearable videos

• Video acquisition setup



- Wide angle camera on shoulder
- Non intrusive and easy to use device
- IADL capture: from 40 minutes up to 2,5 hours

2. Wearable videos

- 4 examples of activities recorded with this camera: video
- Making the bed, Washing dishes, Sweeping, Hovering

3.1 Temporal Segmentation

- Pre-processing: preliminary step towards activities recognition
- Objectives:
 - Reduce the gap between the amount of data (frames) and the target number of detections (activities)
 - Associate one observation to one viewpoint
- Principle:
 - Use the global motion e.g. ego motion to segment the video in terms of viewpoints
 - One key-frame per segment: temporal center
 - Rough indexes for navigation throughout this long sequence shot
 - Automatic video summary of each new video footage

3.1 Temporal Segmentation

• Complete affine model of global motion (a1, a2, a3, a4, a5, a6)

$$\begin{pmatrix} dx_i \\ dy_i \end{pmatrix} = \begin{pmatrix} a_1 \\ a_4 \end{pmatrix} + \begin{pmatrix} a_2 & a_3 \\ a_5 & a_6 \end{pmatrix} \begin{pmatrix} x_i \\ y_i \end{pmatrix}$$

[Krämer et al.] Camera Motion Detection in the Rough Indexing Paradigm, TREC'2005.

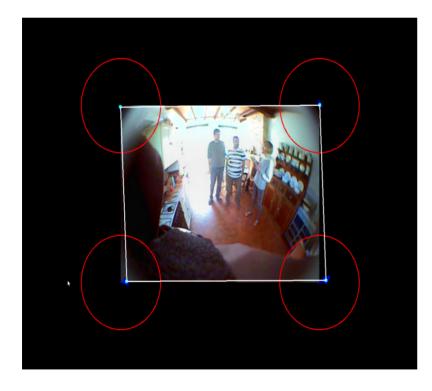
- Principle:
 - Trajectories of corners from global motion model
 - End of segment when at least 3 corners trajectories have reached outbound positions

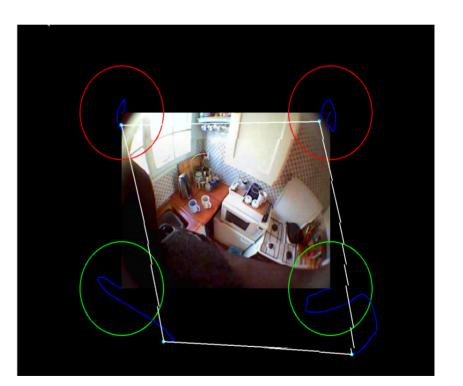
ICPR'2010 - August 26th

3.1 Temporal Segmentation

Threshold *t* defined as a percentage *p* of image width *w* p=0.2 ... 0.25

$$t = p \times w$$





IMMED

3.1 Temporal Segmentation Video Summary

- 332 key-frames, 17772 frames initially
- Video summary (6 fps)

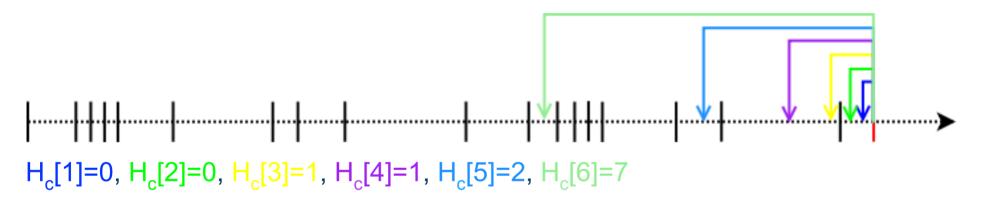


- Color: MPEG-7 Color Layout Descriptor (CLD)
 6 coefficients for luminance, 3 for each chrominance
 - For a segment: CLD of the key-frame, $x(CLD) \in \Re^{12}$
- Localization: feature vector adaptable to individual home environment.
- N_{home} localizations. $x(Loc) \in \Re^{N_{home}}$
- Localization estimated for each frame
- For a segment: mean vector over the frames within the segment
- V. Dovgalecs, R. Mégret, H. Wannous, Y. Berthoumieu. "Semi-Supervised Learning for Location Recognition from Wearable Video". CBMI'2010, France.

- H_{tpe} log-scale histogram of the translation parameters energy Characterizes the global motion strength and aims to distinguish activities with strong or low motion
- $N_e = 5$, $s_h = 0.2$. Feature vectors $x(H_{tpe}, a_1)$ and $x(H_{tpe}, a_4) \in \Re^5$ $H_{tpe}[i] + = 1$ if $\log(a^2) < i \times s_h$ for i = 1 $H_{tpe}[i] + = 1$ if $(i-1) \times s_h \le \log(a^2) < i \times s_h$ for $i = 2..N_e - 1$ $H_{tpe}[i] + = 1$ if $\log(a^2) \ge i \times s_h$ for $i = N_e$
- Histograms are averaged over all frames within the segment

	x(H _{tpe} , a ₁)	x(H _{tpe} ,a ₄)
Low motion segment	0,87 0,03 0,02 0 0,08	0,93 0,01 0,01 0 0,05
Strong motion segment	0,05 0 0,01 0,11 0,83	0 0 0 0,06 0,94

• H_c: cut histogram. The ith bin of the histogram contains the number of temporal segmentation cuts in the 2ⁱ last frames



- Average histogram over all frames within the segment
- Characterizes the motion history, the strength of motion even outside the current segment

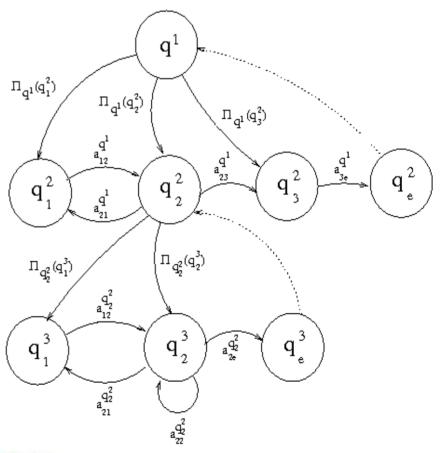
2⁶=64 frames \rightarrow 2s, 2⁸=256 frames \rightarrow 8.5s

 $x(H_c) \in \Re^6 \text{ or } \Re^8$

- Feature vector fusion: early fusion
 - CLD $\rightarrow x(CLD) \in \Re^{12}$
 - Motion
 - $x(H_{tpe}) \in \Re^{10}$
 - $x(H_c) \in \Re^6$ or \Re^8
 - Localization: N_{home} between 5 and 10.
 - $x(Loc) \in \Re^{Nhome}$
- Final feature vector size: between 33 and 40 if all descriptors are used
- Our example:
 - $x \in \Re^{33} = (x(CLD), x(H_{tpe}, a_1), x(H_{tpe}, a_4), x(H_c), x(Loc))$

HMMs: efficient for classification with temporal causality An activity is complex, it can hardly be modeled by one single state Hierarchical HMM? [Fine98], [Bui04]

- Multiple levels
- Computational cost/Learning
- Q^D={q_i^d} states set
- $\Pi_{q_{i^d}}(q_{j^{d+1}})$ = initial probability of child q_i^{d+1} of state q_i^{d}
- A_{ij}^{qd} = transition probabilities between children of q^d



A two level hierarchical HMM:

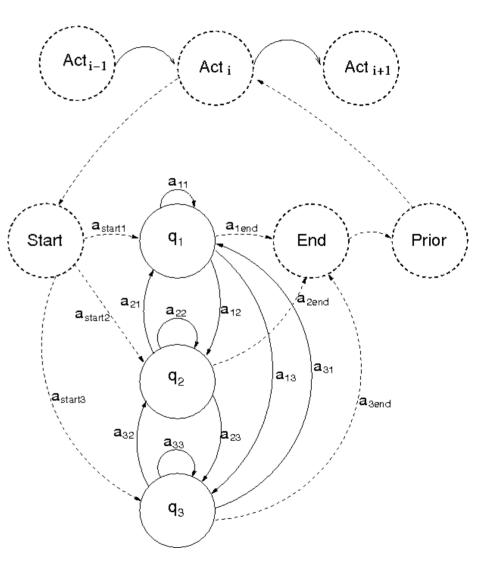
• Higher level:

transition between activities

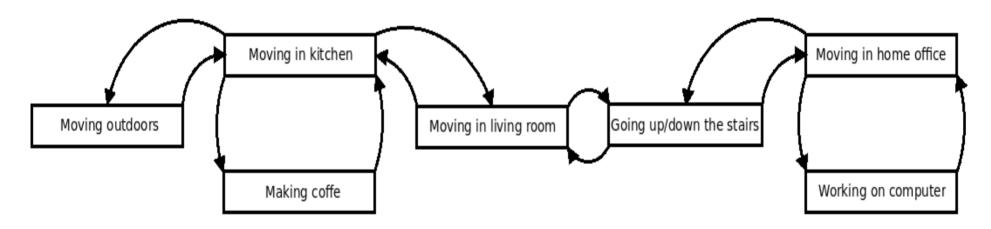
- Example activities:
 Washing the dishes, Hovering,
 Making coffee, Making tea...
- Bottom level:

activity description

- Activity: HMM with 3/5/7 states
- Observations model: GMM
- Prior probability of activity



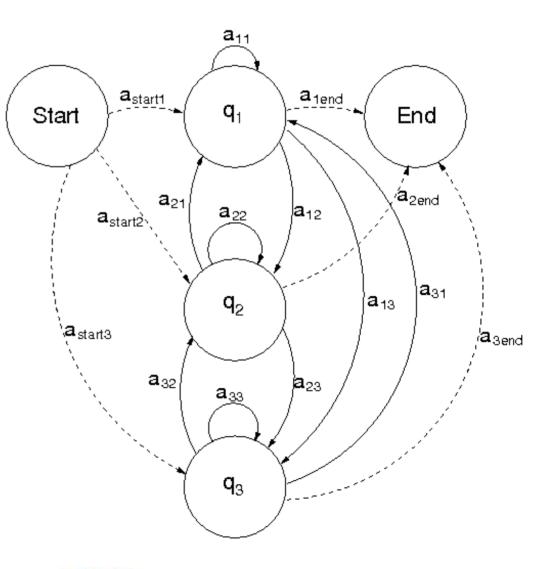
- Higher level HMM
 - Connectivity of HMM is defined by personal environment constraints



- Transitions between activities can be penalized according to an a priori knowledge of most frequent transitions
- No re-learning of transitions probabilities at this level

Bottom level HMM

- Start/End
- \rightarrow Non emitting state
- Observation x only for emitting states q_i
- Transitions probabilities and GMM parameters are learnt by Baum-Welsh algorithm
- A priori fixed number of states
- HMM initialization:
 - Strong loop probability a_{ii}
 - Weak out probability a_{iend}



4. Results

- No database available. One video. Total: 47489 frames.
- Learning on 10% of frames for each activity: 3974 frames. Recognition over 310 segments
- Tests: number of states of the HMM and space description changed. Prior probabilities were set equal.
- Best results:

Configuration	Nb States	F-Score	Recall	Precision
H_{c} + Localization	5	0.64	0.66	0.67
H_{c} + CLD + Localization	3	0.62	0.7	0.66

4. Results

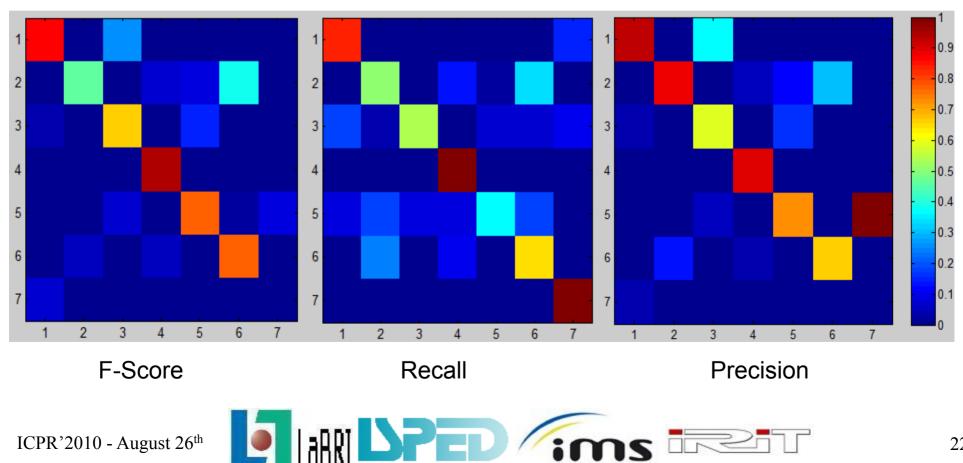
• 7 activities:

Moving in home office, Moving in kitchen, Going up/down the stairs, Moving outdoors, Moving in living room, Making coffee, Working on computer

- Confusion between Moving in home office and Going up/down the stairs (1 and 3)
 - \rightarrow proximity
- Confusion between Moving in kitchen and Making coffee (2 and 6)
 - \rightarrow same localization/environment

4. Results

• 7 activities: Moving in home office, Moving in kitchen, Going up/ down the stairs, Moving outdoors, Moving in living room, Making coffee, Working on computer



Confusion matrixes:

5. Conclusions and perspectives

- Human Activities Indexing and Motion Based Temporal Segmentation methods have been presented
- Encouraging results
- Difficulty to obtain videos (no such database available) and cost of annotation
- Tests on a larger corpus: 6h of videos available (work in progress)
- Audio integration (work in progress)
- Mid-level and local descriptors
 - Hand detection/tracking
 - Object detection
 - Local motion analysis

ICPR'2010 - August 26th

Thank you for your attention.

Questions?

ICPR'2010 - August 26th