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1. The IMMED Project 
•  IMMED: Indexing Multimedia Data from Wearable Sensors for 

diagnostics and treatment of Dementia. 

•  http://immed.labri.fr → Demos: Video 

•  Ageing society: 

•  Growing impact of age-related disorders 

•  Dementia, Alzheimer disease… 

•  Early diagnosis: 

•  Bring solutions to patients and relatives in time 

•  Delay the loss of autonomy and placement into nursing 
homes 

•  The IMMED project is granted by ANR - ANR-09-BLAN-0165 
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1. The IMMED Project 
•  Instrumental Activities of Daily Living (IADL) 

•  Decline in IADL is correlated with future dementia 
PAQUID [Peres’2008] 

•  IADL analysis: 

•  Survey for the patient and relatives → subjective answers 

•  IMMED Project: 

•  Observations of IADL with the help of video cameras worn 
by the patient at home 

•  Objective observations of the evolution of disease 
•  Adjustment of the therapy for each patient 
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2. Wearable videos 
•  Related works: 
•  SenseCam 

•  Images recorded as memory aid 
 [Hodges et al.] “SenseCam: a Retrospective  
 Memory Aid » UBICOMP’2006 

•  WearCam 
•  Camera strapped on the head of young children to help 

identifying possible deficiencies like for instance, autism 
 [Picardi et al.] “WearCam: A Head Wireless  
 Camera for Monitoring Gaze Attention and  
 for the Diagnosis of Developmental Disorders 
 in Young Children” International Symposium  
 on Robot & Human Interactive Communication, 
  2007 
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2. Wearable videos 
•  Video acquisition setup 

•  Wide angle camera 
on shoulder 

•  Non intrusive and 
easy to use device 

•  IADL capture: from 
40 minutes up to 
2,5 hours 

(c)	  
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2. Wearable videos 
•  4 examples of activities recorded with this camera: video 
•  Making the bed, Washing dishes, Sweeping, Hovering 
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3.1 Temporal Segmentation 
•  Pre-processing: preliminary step towards activities recognition 
•  Objectives: 

•  Reduce the gap between the amount of data (frames) and 
the target number of detections (activities) 

•  Associate one observation to one viewpoint 

•  Principle: 

•  Use the global motion e.g. ego motion to segment the video 
in terms of viewpoints 

•  One key-frame per segment: temporal center 

•  Rough indexes for navigation throughout this long sequence 
shot 

•  Automatic video summary of each new video footage 
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•  Complete affine model of global motion (a1, a2, a3, a4, a5, a6) 

 

 

 [Krämer et al.] Camera Motion Detection in the Rough Indexing Paradigm, 
TREC’2005. 

•  Principle: 

•  Trajectories of corners from global motion model 

•  End of segment when at least 3 corners trajectories have 
reached outbound positions 
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3.1 Temporal Segmentation 
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•  Threshold t defined as a percentage p of image width w 
 p=0.2 … 0.25 

 wp=t ×

3.1 Temporal Segmentation 
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3.1 Temporal Segmentation 
Video Summary 

•  332 key-frames, 17772 frames initially 
•  Video summary (6 fps) 
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•  Color: MPEG-7 Color Layout Descriptor (CLD) 

 6 coefficients for luminance, 3 for each chrominance 

•  For a segment: CLD of the key-frame, x(CLD) ∈ ℜ12 

•  Localization: feature vector adaptable to individual home 
environment.  

•  Nhome localizations. x(Loc) ∈ ℜNhome 
•  Localization estimated for each frame 
•  For a segment: mean vector over the frames within the segment 
V. Dovgalecs, R. Mégret, H. Wannous, Y. Berthoumieu. "Semi-Supervised Learning 

for Location Recognition from Wearable Video". CBMI’2010, France. 

3.2 Description space 
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•  Htpe log-scale histogram of the translation parameters energy 

 Characterizes the global motion strength and aims to distinguish 
activities with strong or low motion   

•  Ne = 5, sh = 0.2. Feature vectors x(Htpe,a1) and x(Htpe,a4) ∈ ℜ5 

•  Histograms are averaged over all frames within the segment 

 
x(Htpe, a1) x(Htpe,a4) 

Low motion segment 0,87 0,03 0,02 0 0,08 0,93 0,01 0,01 0 0,05 

Strong motion segment 0,05 0 0,01 0,11 0,83 0 0 0 0,06 0,94  

3.2 Description space 
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• Hc: cut histogram. The ith bin of the histogram contains the number 
of temporal segmentation cuts in the 2i last frames 

  
 Hc[1]=0, Hc[2]=0, Hc[3]=1, Hc[4]=1, Hc[5]=2, Hc[6]=7 

• Average histogram over all frames within the segment 

• Characterizes the motion history, the strength of motion even 
outside the current segment 

26=64 frames → 2s, 28=256 frames → 8.5s 

 x(Hc) ∈ ℜ6 or ℜ8 

 

3.2 Description space 
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•  Feature vector fusion: early fusion 
•  CLD → x(CLD) ∈ ℜ12 

•  Motion 
•  x(Htpe) ∈ ℜ10 

•  x(Hc) ∈ ℜ6 or ℜ8 

•  Localization: Nhome between 5 and 10. 
•  x(Loc) ∈ ℜ Nhome 

•  Final feature vector size: between 33 and 40 if all descriptors are 
used 

•  Our example:  
•  x ∈ ℜ33 = ( x(CLD), x(Htpe,a1), x(Htpe,a4), x(Hc), x(Loc) ) 

3.2 Description space 
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3.3 Activities recognition 

•  Multiple levels 

•  Computational cost/Learning 

•  QD={qi
d} states set 

•                   = initial probability 

of child qj
d+1 of state qi

d 

•  Aij
qd = transition probabilities 

between children of qd 

)(qΠ +djdi
q 1

HMMs: efficient for classification with temporal causality 
An activity is complex, it can hardly be modeled by one single state 
Hierarchical HMM? [Fine98], [Bui04] 
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A two level hierarchical HMM: 

•  Higher level: 
transition between activities 

•  Example activities:  
Washing the dishes, Hovering, 
Making coffee, Making tea... 

•  Bottom level:  
activity description 

•  Activity: HMM with 3/5/7 states 
•  Observations model: GMM 
•  Prior probability of activity 

 

3.3 Activities recognition 
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•  Higher level HMM 

•  Connectivity of HMM is defined by personal environment 
constraints 

•  Transitions between activities can be penalized according to an 
a priori knowledge of most frequent transitions 

•  No re-learning of transitions probabilities at this level 
 

3.3 Activities recognition 
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Bottom level HMM 

•  Start/End  

→ Non emitting state 

•  Observation x only for  
emitting states qi 
•  Transitions probabilities 
and GMM parameters are  
learnt by Baum-Welsh algorithm 
•  A priori fixed number of states 

•  HMM initialization: 

•  Strong loop probability aii 
•  Weak out probability aiend 

 
 
 

3.3 Activities recognition 
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4. Results 
•  No database available. One video. Total: 47489 frames. 
•  Learning on 10% of frames for each activity: 3974 frames. 

Recognition over 310 segments 

•  Tests: number of states of the HMM and space description 
changed. Prior probabilities were set equal. 

•  Best results: 

Configuration Nb States F-Score Recall Precision 

Hc + Localization 5 0.64 0.66 0.67 

Hc + CLD + Localization 3 0.62 0.7 0.66 
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•  7 activities:  
 Moving in home office, Moving in kitchen, Going up/down the 
stairs, Moving outdoors, Moving in living room, Making coffee, 
Working on computer 

 

•  Confusion between Moving in home office and Going up/down the 
stairs (1 and 3) 

 → proximity 

 

•  Confusion between Moving in kitchen and Making coffee (2 and 6) 

  → same localization/environment 

4. Results 
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•  7 activities: Moving in home office, Moving in kitchen, Going up/
down the stairs, Moving outdoors, Moving in living room, Making 
coffee, Working on computer 

 
Confusion matrixes: 
 

F-Score Recall Precision 

4. Results 
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•  Human Activities Indexing and Motion Based Temporal 
Segmentation methods have been presented 

•  Encouraging results 

•  Difficulty to obtain videos (no such database available) and cost of 
annotation 

•  Tests on a larger corpus: 6h of videos available (work in progress) 

•  Audio integration (work in progress) 

•  Mid-level and local descriptors 

•  Hand detection/tracking 

•  Object detection 

•  Local motion analysis 

5. Conclusions and perspectives 
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Thank you for your attention. 

 

Questions? 

 


