Identity inference: generalizing person re-identification scenarios

Svebor Karaman Andrew D. Bagdanov

MICC - Media Integration and Communication Center University of Florence svebor.karaman@unifi.it, bagdanov@dsi.unifi.it

1st International Workshop on Re-Identification 12 October 2012

Outline of the talk

- Introduction
- Related work
- 3 Identity inference as generalization of re-identification
 - Re-identification scenarios
 - Identity inference
- 4 A CRF model for identity inference
- Experimental results
 - Experimental protocol
 - Re-identification
 - Identity inference
- 6 Discussion

Introduction

Re-identification

Recognition of an individual at different times, over different camera views and/or locations, and considering a large number of candidate individuals

- Re-identification performance is usually evaluated as a retrieval problem.
 - Good for descriptor performance analysis but limited wrt the final real world application where the problem should be considered as a labelling problem.
- Re-identification protocols may be ambiguous, and evolved protocols are not generalization of the simpler ones.
 We will formally define all the standard scenarios and their natural generalization.

Related work

- The majority of existing research on the person re-identification problem has concentrated on the **development of sophisticated features for describing the visual appearance** of targets [Schwartz and Davis, 2009, Gray and Tao, 2008, Bak et al., 2011, Farenzena et al., 2010, Cheng et al., 2011, Cai and Pietikäinen, 2011, Bazzani et al., 2012]
- Less research on classification or ranking technique. Ensemble RankSVM [Prosser et al., 2010] which learns a ranking SVM model to solve the single-shot re-identification problem.
- How to solve efficiently re-identification as a labelling problem?
 CRFs for multi-target tracking [Yang and Nevatia, 2012]

Given a set of labels (individuals): $\mathcal{L} = \{1, \dots N\}$, and images of individuals from \mathcal{L} detected in a video collection:

$$\mathcal{I} = \{x_i \mid i = 1 \dots D\}.$$

Each image x_i being represented by a feature vector $\mathbf{x}_i \equiv \mathbf{x}(x_i)$, the corresponding label is given by $y_i \equiv y(x_i)$.

ECCV Workshops 2012

Given a set of labels (individuals): $\mathcal{L} = \{1, \dots N\}$, and images of individuals from \mathcal{L} detected in a video collection:

$$\mathcal{I} = \{x_i \mid i = 1 \dots D\}.$$

Each image x_i being represented by a feature vector $\mathbf{x}_i \equiv \mathbf{x}(x_i)$, the corresponding label is given by $y_i \equiv y(x_i)$.

Re-identification problem definition

A re-identification problem is a tuple $\mathcal{R}=(\mathcal{X},\mathcal{Z})$ completely characterized by its gallery and test image sets (\mathcal{X} and \mathcal{Z} , respectively).

A solution to an instance of a re-identification problem is a mapping from the test images $\mathcal Z$ to the set of all permutations of $\mathcal L$.

Gallery images

Gallery images \mathcal{X} , defined as:

$$\mathcal{X} = \{\mathcal{X}_j \mid j = 1 \dots N\}, \text{ where } \mathcal{X}_j \subset \{x \mid y(x) = j\}$$

Gallery images

Gallery images \mathcal{X} , defined as:

$$\mathcal{X} = \{\mathcal{X}_j \mid j = 1 \dots N\}, \text{ where } \mathcal{X}_j \subset \{x \mid y(x) = j\}$$

Test images

The set of test images \mathcal{Z} , defined as:

$$\mathcal{Z} = \{\mathcal{Z}_j \mid j = 1 \dots M\} \subset \mathcal{P}(\mathcal{I})$$

 \mathcal{P} is the powerset operator (i.e. $\mathcal{P}(I)$ is the set of all subsets of \mathcal{I}). For all $\mathcal{Z}_i \in \mathcal{Z}$:

- $x, x' \in \mathcal{Z}_j \Rightarrow y(x) = y(x')$, sets in \mathcal{Z} have homogeneous labels
- and $\mathcal{Z}_j \in \mathcal{Z} \Rightarrow \mathcal{Z}_j \cap \mathcal{X}_i = \emptyset, \forall i \in \{1 \dots N\}$, disjoint test and gallery sets

Re-identification scenarios

• Single-versus-all (SvsAll): single gallery image for each individual, all remaining instances of each individual as test. $\mathcal{R}_{\text{SvsAll}} = (\mathcal{X}, \mathcal{Z})$:

$$\mathcal{X}_j = \{x\} \text{ for some } x \in \{x \mid y(x) = j\}, \text{ and } \mathcal{Z}_j = \{\{x\} \mid x \in \mathcal{I} \setminus \mathcal{X}_j \text{ and } y(x) = j\}$$

Re-identification scenarios

• Single-versus-all (SvsAll): single gallery image for each individual, all remaining instances of each individual as test. $\mathcal{R}_{\text{SvsAll}} = (\mathcal{X}, \mathcal{Z})$:

$$\mathcal{X}_j = \{x\} \text{ for some } x \in \{x \mid y(x) = j\}, \text{ and } \mathcal{Z}_j = \{\{x\} \mid x \in \mathcal{I} \setminus \mathcal{X}_j \text{ and } y(x) = j\}$$

• Multi-versus-single shot (MvsS): G gallery images of each person, each of the test sets \mathcal{Z}_j contains a single image. $\mathcal{R}_{\mathsf{MvsS}} = (\mathcal{X}, \mathcal{Z})$:

$$\mathcal{X}_j \subset \{x \mid y(x) = j\} \text{ and } |\mathcal{X}_j| = G \ \forall j \text{ and}$$

 $\mathcal{Z}_i = \{x\} \text{ for some } x \notin \mathcal{X}_i \text{ s.t. } y(x) = j.$

Re-identification scenarios

• Single-versus-all (SvsAll): single gallery image for each individual, all remaining instances of each individual as test. $\mathcal{R}_{\text{SvsAll}} = (\mathcal{X}, \mathcal{Z})$:

$$\mathcal{X}_j = \{x\} \text{ for some } x \in \{x \mid y(x) = j\}, \text{ and } \mathcal{Z}_j = \{\{x\} \mid x \in \mathcal{I} \setminus \mathcal{X}_j \text{ and } y(x) = j\}$$

• Multi-versus-single shot (MvsS): G gallery images of each person, each of the test sets \mathcal{Z}_j contains a single image. $\mathcal{R}_{\mathsf{MvsS}} = (\mathcal{X}, \mathcal{Z})$:

$$\mathcal{X}_j \subset \{x \mid y(x) = j\} \text{ and } |\mathcal{X}_j| = G \ \forall j \text{ and}$$

 $\mathcal{Z}_j = \{x\} \text{ for some } x \notin \mathcal{X}_j \text{ s.t. } y(x) = j.$

• Multi-versus-multi shot (MvsM): the gallery and test sets of each person both have G images. $\mathcal{R}_{\mathsf{MvsM}} = (\mathcal{X}, \mathcal{Z})$:

$$\mathcal{X}_j \subset \{x \mid y(x) = j\} \text{ and } |\mathcal{X}_j| = G \ \forall j \text{ and}$$

 $\mathcal{Z}_j \subset \{x \mid y(x) = j \text{ and } x \notin \mathcal{X}_j\} \text{ and } |\mathcal{Z}_j| = G \ \forall j.$

ECCV Workshops 2012

Identity inference

Identity inference problem definition

Having few labeled images, label many unknown images without explicit knowledge that groups of images represent the same individual.

- The formulation of the *single-versus-all* re-identification falls within the scope of identity inference
- Neither the multi-versus-single nor the multi-versus-multi formulations are a generalization of this case to multiple gallery images

Identity inference

Identity inference problem definition

Having few labeled images, label many unknown images without explicit knowledge that groups of images represent the same individual.

- The formulation of the *single-versus-all* re-identification falls within the scope of identity inference
- Neither the multi-versus-single nor the multi-versus-multi formulations are a generalization of this case to multiple gallery images

Identity inference formulation

A multi-versus-all configuration, $\mathcal{R}_{\mathsf{MvsAll}} = (\mathcal{X}, \mathcal{Z})$:

$$\mathcal{X}_j \subset \{x \mid y(x) = j\} \text{ and } |\mathcal{X}_j| = G \text{ and } \mathcal{Z}_j = \{\{x\} \mid x \in \mathcal{I} \setminus \mathcal{X}_j \text{ and } y(x) = j\}$$

<ロ > 4回 > 4回 > 4 き > 4 き > き 9 9 9

A CRF model for identity inference I

CRF definition

CRF defined by a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, a set of random variables $\mathcal{Y} = \{Y_j \mid j = 1 \dots |V|\}$ and a set of possible labels \mathcal{L} .

- ullet Vertices $\mathcal V$: index the random variables in $\mathcal Y$
- ullet Edges \mathcal{E} : statistical dependence relations between random variables

A CRF model for identity inference I

CRF definition

CRF defined by a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, a set of random variables $\mathcal{Y} = \{Y_j \mid j = 1 \dots |V|\}$ and a set of possible labels \mathcal{L} .

- ullet Vertices $\mathcal V$: index the random variables in $\mathcal Y$
- ullet Edges \mathcal{E} : statistical dependence relations between random variables

The labeling problem

Find an assignment of labels to nodes that minimizes an energy function E over possible labelings $\mathbf{y}^* = (y_i^*)_{i=1}^{|V|}$:

$$\tilde{\mathbf{y}} = \arg\min_{\mathbf{y}^*} E(\mathbf{y}^*) \tag{1}$$

A CRF model for identity inference II

Energy function definition

$$E(\mathbf{y}^*) = \sum_{i \in \mathcal{V}} \phi_i(y_i^*) + \lambda \sum_{(i,j) \in \mathcal{E}} \psi_{ij}(y_i^*, y_j^*), \tag{2}$$

- $\phi_i(y_i^*)$ unary data potential, cost of assigning label y_i^* to vertex i
- $\psi_{ij}(y_i^*, y_j^*)$ binary smoothness potential, conditional cost of assigning labels y_i^* and y_i^* respectively to vertices i and j
- Parameter λ : tradeoff between data and smoothness costs.

Efficient algorithms for finding the optimal labeling $\tilde{\mathbf{y}}$, for example, **graph cuts** [Kolmogorov and Zabin, 2004, Szeliski et al., 2008].

Definition of unary data and smoothness potentials

Unary data potential

Cost of assigning label y_i^* to vertex i given $\mathbf{x}(x_i)$. Proportional to the minimum distance between x_i and any gallery image of individual y_i^* .

$$\phi_i(y_i^*) = \begin{cases} 1 & \text{if } x_i \in \mathcal{X} \text{ and } y_i^* \neq y(x_i) \\ \min_{x \in \mathcal{X}_{y_i^*}} ||\mathbf{x}(x) - \mathbf{x}(x_i)|| & \text{otherwise.} \end{cases}$$

Definition of unary data and smoothness potentials

Unary data potential

Cost of assigning label y_i^* to vertex i given $\mathbf{x}(x_i)$. Proportional to the minimum distance between x_i and any gallery image of individual y_i^* .

$$\phi_i(y_i^*) = \begin{cases} 1 & \text{if } x_i \in \mathcal{X} \text{ and } y_i^* \neq y(x_i) \\ \min_{x \in \mathcal{X}_{y_i^*}} ||\mathbf{x}(x) - \mathbf{x}(x_i)|| & \text{otherwise.} \end{cases}$$

Smoothness potential

Encourage similar detections to share the same labels:

$$\psi_{ij}(y_i^*, y_j^*) = w_{ij} \min_{\substack{x \in \mathcal{X}_{y_i^*} \\ x' \in \mathcal{X}_{y_i^*}}} ||\mathbf{x}(x) - \mathbf{x}(x')||.$$
(3)

Weighting factors w_{ij} allow flexibility in the smoothness potential between nodes i and j.

Solving re-identification problem through the CRF

An identity inference problem $\mathcal{R}=(\mathcal{X},\mathcal{Z})$ is mapped onto a CRF by defining the vertex \mathcal{V} and edge \mathcal{E} sets in terms of the gallery \mathcal{X} and test \mathcal{Z} images sets.

MvsM re-identification problem

$$\mathcal{V} = \bigcup_{i=1}^{M} \mathcal{Z}_i \text{ and } \mathcal{E} = \{(x_i, x_j) \mid x_i, x_j \in \mathcal{Z}_I \text{ for some } I\}.$$

The edge topology in this CRF is completely determined by the group structure as expressed by the \mathcal{Z}_i (w_{ij} =1).

Solving identity inference problem through the CRF

General identity inference case (as well as in SvsAll re-identification) no identity grouping information is available for the test set

Identity inference problem

$$V = I \text{ and } \mathcal{E} = \bigcup_{x_i \in V} \{(x_i, x_j) \mid x_j \in \text{kNN}(x_i)\},$$

where the $kNN(x_i)$ maps an image to its k most similar images in feature space.

Topology of this CRF formulation uses feature similarity to form connections between nodes.

Edges defined as K (K=4) nearest neighbors in feature space.

Solving identity inference problem through the CRF

Smoothness potential weighting

• Weights w_{ij} of (3) between vertices i and j include feature similarity and (eventually) a temporal constraint:

$$w_{ij} = (1 - \alpha)(1 - ||\mathbf{x}(x_i) - \mathbf{x}(x_j)||) + \alpha \tau_{ij}, \tag{4}$$

 $lpha \in [0,1]$ tradeoff between temporal and feature similarities (lpha = 0.3)

 \bullet τ_{ij} is a temporal weighting factor:

$$\tau_{ij} = \begin{cases} 1 - \frac{|f_i - f_j|}{\tau} & \text{if } |f_i - f_j| \le \tau \\ 0 & \text{otherwise,} \end{cases}$$
 (5)

where f_i and f_j are the frame numbers in which detections i and j occurred, respectively, and τ is a threshold limiting the temporal influence to a finite number of frames (fixed to 25).

Publicly available ETHZ [Schwartz and Davis, 2009] dataset: 3 video sequences (ETHZ1: 4857 images, 83 persons; ETHZ2: 1961 images, 35 persons; ETHZ3: 1762 images, 28 persons).

On average each person appears in more than 50 images.

Figure 1: Our feature descriptor: 1×6 spatial pyramid histogram over densely sampled HueSIFT [van de Weijer and Schmid, 2006] features quantized to a visual vocabulary of 512 visual words.

Re-identification

Figure 2: MvsM re-identification accuracy ($\lambda=1$). Left to right: ETHZ1, ETHZ2 and ETHZ3. These are *not* CMC curves, but are Rank-1 *classification* accuracies over varying gallery and test set sizes.

CRF enforces labeling consistency, allows our approach to outperform simpler GroupNN and state-of-the-art methods.

Identity inference

Figure 3: Identity inference accuracy on ETHZ datasets ($\lambda = 5$). Left to right: ETHZ1, ETHZ2 and ETHZ3.

- CRF framework clearly improves accuracy over simple NN model.
- T-GCIDInf: feature similarity-weighted edges with temporal constraints (avg improvement of 15% over NN)
- Label many unknown images using only few gallery images
- Robustness to occlusions and illumination changes_

Qualitative results

Figure 4: Identity inference results (SvsAll). First row: test image, second row: incorrect NN result, third row: correct result given by GCldInf.

Neighbors graph visualization

Figure 5: ETHZ3 neighbors graph visualization

Discussion

Conclusion

- Identity inference, generalization of re-identification scenarios:
 - Generalization of the single-versus-all scenario
 - Relaxation of the multi-versus-multi shot case
 - No hard knowledge about relationships between test images (e.g. that they correspond to the same individual) required.
- Solved by CRF-based approach. Neighborhood topology defined by feature space and temporal (when available) similarity
- Experimental results:
 - CRF approach can efficiently solve standard re-identification tasks
 - CRF model can also solve more general identity inference problems

Future works on exploring more powerful descriptors and more realistic configurations for identity inference in the real world. Recording of a multi-camera dataset for identity inference.

References

- S. Bak, E. Corvee, F. Bremond, and M. Thonnat. Multiple-shot human re-identification by mean riemannian covariance grid. In Proceedings of AVSS, pages 179–184, 2011.
- Loris Bazzani, Marco Cristani, Alessandro Perina, and Vittorio Murino. Multiple-shot person re-identification by chromatic and epitomic analyses. *Pattern Recognition Letters*, 33(7):898–903, 2012.
- Y. Cai and M. Pietikäinen. Person re-identification based on global color context. In *Proceedings of ACCV Workshops*, pages 205–215, 2011.
- Dong S. Cheng, Marco Cristani, Michele Stoppa, Loris Bazzani, and Vittorio Murino. Custom pictorial structures for re-identification. In *Proceedings of BMVC*, 2011.
- M. Farenzena, L. Bazzani, A. Perina, V. Murino, and M. Cristani. Person re-identification by symmetry-driven accumulation of local features. Proceedings of CVPR, pages 2360–2367, 2010.
- Douglas Gray and H. Tao. Viewpoint invariant pedestrian recognition with an ensemble of localized features. In Proceedings of ECCV, pages 262–275, 2008. doi: http://dx.doi.org/10.1007/978-3-540-88682-2-21.
- V. Kolmogorov and R. Zabin. What energy functions can be minimized via graph cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(2):147–159, 2004.
- Bryan Prosser, Wei-Shi Zheng, Shaogang Gong, and Tao Xiang. Person re-identification by support vector ranking. In Proceedings of BMVC. 2010.
- W.R. Schwartz and L.S. Davis. Learning discriminative appearance-based models using partial least squares. In *Proceedings of SIBGRAPI*, pages 322–329. IEEE, 2009.
- R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A. Agarwala, M. Tappen, and C. Rother. A comparative study of energy minimization methods for markov random fields with smoothness-based priors. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 30(6):1068–1080, 2008.
- Joost van de Weijer and Cordelia Schmid. Coloring local feature extraction. In *Proceedings of ECCV*, volume Part II, pages 334–348, 2006. URL http://lear.inrialpes.fr/pubs/2006/VS06.
- B. Yang and R. Nevatia. An online learned crf model for multi-target tracking. In Proceedings of CVPR, 2012.

Questions?

Identity inference: generalizing person re-identification scenarios

Svebor Karaman Andrew D. Bagdanov

MICC - Media Integration and Communication Center University of Florence svebor.karaman@unifi.it, bagdanov@dsi.unifi.it

1st International Workshop on Re-Identification 12 October 2012

