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Abstract—In this paper we describe an approach to automati-
cally improving the efficiency of soft cascade-based person detec-
tors. Our technique addresses the two fundamental bottlenecks
in cascade detectors: the number of weak classifiers that need to
be evaluated in each cascade, and the total number of detection
windows to be evaluated. By simply observing a soft cascade
operating on a scene, we learn scale specific linear approximations
of cascade traces that allows us to eliminate a large fraction of
the classifier evaluation. Independently, this time by observing
regions of support in the soft cascade on a training set, we learn
a coarse geometric model of the scene that allows our detector to
propose candidate detection windows and significantly reduce the
number of windows run through the cascade. Our approaches are
unsupervised and require no additional labeled person images for
learning. Our linear cascade approximation results in about 28%
savings in detection, while our geometric model gives a saving of
over 95%, without appreciable loss of accuracy.

I. INTRODUCTION

Person detection provides the basic measurement model
for tracking and person re-identification and is therefore a
fundamental component of most modern surveillance systems.
However, due to its computationally onerous nature it is also
the bottleneck in many systems. The general problem of
detection has emerged as one of the major themes of modern
computer vision research. Person detection in particular is an
highly active topic of research. It has received a lot of attention
in recent years, but remains an extremely difficult problem.

Person detection in unconstrained scenes is computation-
ally expensive for several reasons. First of all, without knowl-
edge of the geometry of the scene, every location and scale
must be scanned for potential detections. Second, in the soft
cascade detection architecture, currently the state-of-the-art
for efficient person detection, a cascade of weak classifiers
must be evaluated at each of these locations and scales to
obtain a detection score. These two factors conspire to render
unconstrained detection computationally onerous.

Improvements in the computational cost of person detection
often address only one of these factors and rely on supervision
such as manual calibration of the camera. We believe that
it is crucial in practice that both factors be addressed with
only weak or no supervision. In this work we propose two
approaches to scene adaptation for soft cascade pedestrian
detectors that need only to observe an already trained detection
on the scene of interest. Our first adaptation strategy performs
linear cascade approximation to avoid evaluating all stages
of the soft cascade, while our second strategy minimizes the

number of candidate windows evaluated using a statistical
model of scales and position of likely detections in the scene.

In the next section we discuss the state-of-the-art in per-
son detection. In section III we describe the soft cascade
detection architecture which represents the current state-of-
the-art. We describe our approach to learning how to detect
faster in section IV, and in section V we report on a number
of experiments we performed to evaluate our approach. We
conclude in section VI with a discussion of our contribution.

II. RELATED WORK

Most state-of-the art methods follow the pipeline depicted
in figure 1. Recently many techniques have been proposed that
improve the detection process both in terms of accuracy and
efficiency. These methods can be roughly grouped based on
the domain on which they act: the multi-scale feature repre-
sentation, the method used for proposing detection windows
or exploiting scene geometry, and the classifier used.

An approach to computational saving in the feature domain
was proposed in [1]. The Integral Channel Feature for integral
images uses a combination of different heterogeneous infor-
mation channels information to speedup the detection process
while maintaining high accuracy. While a feature pyramid
is mandatory for multi-scale detection, the authors of [2]
proposed an approximation that avoid the direct computation
of all levels of the feature pyramid by extracting them only for
the median layer of each octave and approximating the remain-
ing scales. This approximation, namely Aggregated Channel
Features (ACF), takes the form of an exponential function that
depends both on the type of the feature and on the position
of the level in the octave. However, this preserves detector
robustness only for an octave. In [3] the authors exploit a
trained classifier for each octave and the approximation in [2]
to avoid the computation of the features for each level in the
octave.

Several methods have been proposed to speed up the
computation by reducing the number of detection windows
evaluated. In [4], [5] the authors propose to first compute a
sparse set of detector responses and then sample more densely
around promising locations. In [6] the Crosstalk Cascade was
proposed to simultaneously evaluate multiple candidates at a
time exploiting two type of cascade: excitatory cascades that
encourage a detection window with a neighborhood of possible
positive responses and inhibitory cascades that reject detection
windows with low partial scores in the neighborhood.
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Fig. 1. Standard execution pipeline of a multi-scale pedestrian detector. Given an image I, a pyramid is computed from it by progressively sampling by a fixed
factor to obtain the set of levels. For each level are selected the detection windows and then from each of these are extracted the feature that will be considered
by the classifier. Finally, for all detection windows not rejected, a non maximum suppression process is performed to obtain the final positive detection windows.

The geometry of the scene is also extensively exploited
in the to speedup the computation and improve detection
accuracy. For example, the method proposed in [7] exploits
a calibration of the scene to improve and speedup a person
detector by spatially filtering detection windows based on the
expected height of a person. In [8] the authors propose a
probabilistic inference model to merge pre-trained detector
responses with scene geometry knowledge. However, this
method requires that the vanishing lines be always visible in
the image in order to estimate a coarse camera viewpoint from
objects in the scene. The Stixels model used in [3] exploits a
stereo vision system to extract depth information of the scene
and then reduce the set of candidate detection windows.

In the classifier domain the Hard Cascade [9] improves
both the accuracy and efficiency of the classic AdaBoost
algorithm [10] by specializing the first stages in order to reject
the majority of the negatives detection windows. The authors
of [11] proposed the Soft Cascade architecture in which the
evaluation of each detection window depends on the sum of
all stages partial scores up to the current stage. The rejection
threshold at each stage is learned considering the ROC surface,
thus taking into account conjointly the speedup, the detection
rate and the false positive rate.

We propose a framework to speed up the detection process
by acting both in the classifier domain and in the scene
geometry domain. The result is a significant reduction in the
total number of stages evaluation required in the soft cascade
detection process. To do this we exploit the regions of support,
which refers to the suppressed positive detections that occur
around a local maxima, to improve detector efficiency in:

• the classifier domain through linear approximation of
soft cascades in order to estimate a final detection
score without calculating all stages;

• the pyramid domain by locally modeling the scene-
dependent statistics of detection windows and their
scale distribution in order to focus effort on the
evaluation of detection windows that are more likely
to be a local maxima in the image.

Our approach does not require any a priori information about
the scene and all learning is done by mining statistics about
the soft cascade detector operating on a scene.

III. PEDESTRIAN DETECTION WITH SOFT CASCADE

In figure 1 we show the standard pipeline for person
detection. Since the process of capturing an image from a scene
can introduce changes in the scale of a pedestrian, a multi-scale
detector is required. This is usually performed by constructing

a pyramid of images, which is a set of images obtained
by progressively upsampling and downsampling the original
image (referred to as the levels of image pyramid). Then
each level is processed to extract the features. In particular,
candidate regions are usually obtained using a sliding window
at a fixed step size over all image levels. A classifier is then
applied to each window for each level to assign a score. Finally,
non maximum suppression is performed on positive candidates
to obtain the final detection windows.

A. Multi-scale detection complexity

Without any optimization strategies, the evaluation of the
whole pyramid of images in terms of total number of detection
windows can be very expensive. Let L be the total number of
levels of the pyramid, with m levels per octave, extracted for
an image of n × n pixels, then the total number of windows
that must be evaluated is:

L−1∑
l=0

O(n2) 2
−2l
m ≈ n2

L−1∑
l=0

(4−
1
m )l

= n2

(
1− 4−

L
m

1− 4−
1
m

)
(1)

Note that eq. (1) converges to n2/(1 − 4−
1
m ) for L → ∞.

Thus, for an image of 640 × 480 pixels with a pyramid of 3
octaves of 8 levels each, a total of 285, 944 detection windows
must be evaluated.

B. The soft cascade classifier

An evolution of the cascade classifier used in [9] is the
Soft Cascade proposed in [11]. To train a Soft Cascade, a set
of rejection thresholds is learned in order to perform early
stopping during the evaluation of negative detection windows.
Given the feature vector x ∈ RD of a sample detection
window, and let H : RD → R be a classifier composed of
T stages, where each stage is a function hi : RD → R. The
partial score up to stage t is computed as:

Ht(x) =

t∑
i=1

hi(x). (2)

Let {τt} be the set of rejection thresholds, x is classified as
positive with score HT (x) if Ht(x) ≥ τt ∀t ∈ [1, T ]. In
this way the evaluation of each sample depends also on the
scores obtained in the previous stages. Thus, considering the
number of detection windows estimated in (1), it follows that
using a soft cascade with 1024 stages requires the evaluation
of approximately 109 stages for a single second of a video
at 25 fps. This enormous number of cascade stages evaluated
renders real-time pedestrian detection extremely challenging.



Fig. 2. The Region of Support (ROS) around strong detections (black
detection window) on a frame extracted from Oxford. The windows inside
the same ROS have the same color and at the top-left of each strong detection
window we report the cardinality of each ROS.

IV. UNSUPERVISED SCENE ADAPTATION OF SOFT
CASCADE DETECTORS

To avoid the computation of a very high number of stages
as described in section III we propose a strategy to reduce
the entire process by acting on both the classification and
the detection windows proposal on the pyramid. The first
contribution regards the total number of weak classifiers that
must be evaluated to obtain a score for each positive detection
window. In particular, we propose a solution to approximate
the final score of a detection window without considering all
the stages of a soft cascade. The second contribution pro-
vides an alternative strategy to the classic detection windows
proposal that is able to avoid the sampling on the scene of
those detection windows with a low probability of being a
local maximum, in particular by filtering out those windows
with a scale not consistent with the geometry of the scene.
Both strategies are unsupervised and require only some frames
extracted from the observed scene as a training set.

A. Leveraging region of support information

As reported in [6], the responses of the classifier on near
positions and scales of the pyramid are related. A region of
support (ROS) represents the extension of the sub-regions of
an image in which all the detection windows (with different
scale) are classified as positives. In general a ROS is composed
of many intersecting detection windows, each with a different
score. The window with the highest score is called local
maximum (strong) because it is the only one that will survive
the non maximum suppression procedure. Figure 2 shows some
strongs with their respective ROS extracted from a soft cascade
on a frame from the Oxford dataset [12]. The ROS shown can
be very indicative of both the detector precision and the scene
geometry, as well as the targets location inside the scene. In
fact, the cardinality of each ROS can be used as a estimate of
true positive for a detection window since the objects with a
low rank in the frame are often false positive, e.g. the garbage
and the mannequins. The location and scale of strongs can
be considered to learn a model able to describe the geometry
and perspective of the scene. All this information are very
discriminative and can be extracted at no additional cost during
the non maximum suppression process.
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Fig. 3. Average positive traces extracted from a soft cascade of 1024 stages
on the Oxford dataset. Traces are colored based on their level membership in
the pyramid with 3 octaves of 8 levels each.

B. Linear cascade approximation

In figure 3 we plot the average positive traces from the
Oxford sequence. Note how all traces are basically linear.
They are subject to local perturbations of limited energy.
Considering this trend, we estimate a linear function that
approximates the trend of the traces from each level separately.

In particular, we define a linear score estimation function
H̃t→T (x) ∈ R that requires the evaluation of only a fixed
number t < T of cascade stages and such that:

H̃t→T (x) ≈ HT (x), (3)

where HT (x) represents the true cascade output obtained by
evaluating all stages on input x. We use linear regression and
estimate the slope and intercept parameters for each trace.
Formally, we solve the following minimization problem:

ŵ = arg min
w

∥∥STw − ht→T (x)
∥∥ (4)

where w ∈ R2, w = [w0 w1] with w0 the intercept and w1

the slope and with:

S =

[
1 · · · 1 · · · 1
t t+ ∆ t+ 2∆ · · · T

]
(5)

hT
t→T (x) = [Ht(x) Ht+∆(x) · · · HT (x)] (6)

where ∆ is the sampling step for the stages used in the regres-
sion. Under the maximum rank hypothesis of S the problem
in Eq. (4) admits a unique solution ŵ = (SST)−1S ht→T (x).

We compute {ŵl
i} through eq (4) for each trace in each

level l of the pyramid and then estimate the final parameter
wl as the average. The final score approximation is:

H̃t→T (x) = wl · [0 T − t ] +Ht(x) + εl (7)

where l is the level of x, εl is an error obtained as E[HT (x)−
(wl · [0 T−t ]+Ht(x))] for x ∈ V , and V is a validation set.
Note that Eq. (7) does not consider w0, since the approximation
is constrained to pass through Ht(x) in that H̃t→t(x) ' Ht(x).

Eq. 7 is easy and fast to compute and can be used to obtain
an approximation of the final score of a detection window. This
approximation requires the evaluation of only the first t stages
of the soft cascade. Note also that it is completely unsupervised
in that we only require a sample of cascade evaluations from
an already trained soft cascade detector and do not require
additional labeled training data to fit the model parameters.
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Fig. 4. Pipeline for training the candidate window proposal model. After selecting the grid resolution, for each frame of the training set we extract the histogram
of levels Hb and {µb,Σb} considering the ROI information of strong detections. Finally, for each block we estimate the energy parameter Eb to accentuate
the research in sub-regions of the scene.

C. A generative model for candidate window proposal

The naive soft cascade approach to detection achieves scale
invariance by exhaustively scanning all locations and scales in
an image. In practice, especially in typical surveillance scenar-
ios using fixed cameras, not all scale/location combinations are
feasible due to the geometry of the scene. Our second strategy
is to learn a generative model for candidate window proposal
in order to reduce the number of candidate windows extracted
from the pyramid. We do this without relying on calibration or
any additional information. As shown in figure 2, the presence
and scale of targets is highly dependent on the geometry of the
scene. Since the geometric information of the scene is directly
related to the level of the pyramid, we argue that the complete
evaluation of all possible levels of the pyramid in all sub-
regions of the image is wasteful. Instead, we will exploit the
ROS for observed strong detections (i.e. those that survive non
maximum suppression) in order to propose candidate windows
for each scale and position combination in the scene.

Learning the generative model The pipeline of the pro-
posed model is shown in figure 4. To extract the statistics of
subregions of the scene we divide each frame of the training
set into n × n rectangular blocks. Inside each block b, the
strong detections observed in the training set are used to
compute a histogram Hb where each bin Hlb represents a
level of the pyramid. Specifically, the strong detections in the
block b contribute with the cardinality of their ROS in the
corresponding bin level. The cardinality of the ROS is the
number of detections that are suppressed by the overlapping
strong detection. This provides a robust local description of
the frequent scales in a block.

To extract information about the representative locations in
a block for a certain level we thus compute the average centroid
position µlb and its covariance Σlb on the strong detections.
This is useful to estimate the real locations in the scene where
person detections occur with high probability. Finally, for each
block we compute an energy factor Eb, such that:

Eb =

∑L
l=1Hlb∑

b̃∈Gn
∑L
l=1Hlb̃

, (8)

where Gn indicate the set of blocks. This factor emphasizes
the research for certain sub-regions by generating the detection
windows proportionally. The final model is:

Mn = (Gn, {H̃lb}, {µlb,Σlb}, {Eb}), (9)

where H̃lb indicates Hlb normalized over all levels in block b.

Candidate window proposal at detection time The number
of detection windows of a pyramid to be evaluated is chosen
proportionally to a parameter γ ∈ [0, 1]. This parameter is an
estimate of target speedup. There is clearly a tradeoff between
speed (γ → 0) and accuracy (γ → 1). In particular, given a test
frame I , the number of detection windows that we evaluate for
each block b and level l in the pyramid P(I) is:

N = γ |P(I)| Eb H̃lb. (10)

where |P(I)| corresponds to the total number of detection
windows in pyramid P(I).

At detection time we sample detection windows using an
iterative procedure. In the first iteration we randomly sample
N detection windows from the normal distribution N (µlb,Σ

l
b).

From this set of detection windows we remove duplicates
and if necessary perform another iteration, expanding the
covariance matrix by a fixed factor s along the principal
directions of the covariance matrix Σlb.

Note that this strategy for improving the efficiency of soft
cascade detection is completely unsupervised. We build our
scale- and position-local generative models by analyzing the
behavior of strong detections and their regions of support on
a training set of detection outputs. At detection time we can
control the number of candidate windows proposed and thus
control the efficiency/accuracy tradeoff of the final detector.

V. EXPERIMENTAL RESULTS

In this section we report the performance of our linear cas-
cade approximation, our candidate windows proposal model,
and the combination of both. We use the soft cascade detector
implemented in the OpenCV repository1 as our baseline.
We use two datasets in our experiments: Oxford [12] and
PETS [13]. The Oxford dataset is a challenging full HD video
sequence due to high variation of pedestrian scale, occlusions
and confusion with shopping window mannequins. For the
PETS dataset we considered the s2.l1-view1 sequence with an
image resolution of 768×576 pixels. We extracted 180 frames
from Oxford by sampling one over fifteen frames and 199
frames from PETS by sampling one over four frames. From
these frames we a third for the training and the remaining for
the test. All comparisons between different detectors are given
using ROC curves in terms of miss rate versus false positive
per image. The baseline is represented by the soft-cascade with
1024 stages using a classifier for each octave and a pyramid
of images consisting of 3 octaves of 8 levels each.

1Open source computer vision library, https://github.com/Itseez/opencv
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Fig. 5. ROC curves of baseline using the linear cascade approximation, for different values of t, in sequence Oxford (a) and PETS (b). In bracket we show
the obtained saving. (c) Saving (delta) for different values of t, using the linear cascade approximation. The maximum reduction is under the 40% (1.5x).

The performance of our proposed approaches is measured
as function of a savings factor δ that is computed as:

δ =

∑
∀x∈P [H(x)]∑

∀x∈X 1{c=0} [H(x)] + 1{c=1} [H̃t→T (x)]
(11)

where the operator [·] returns the number of stages computed,
c indicates if the linear cascade approximation is used (c = 1)
and X = P when all sliding detection windows are considered
or X = P̃ when the set of detection windows is obtained from
our generative model for candidate window proposal.

A. Experiments with linear cascade approximation

In this section we analyze the performance of linear
cascade approximation for different t values. Observe in
Figure 5(a) how on the Oxford sequence, the curves of the
proposed approximation are close to the baseline, with a
gradual reduction in loss when the number of stages evaluated
increases. The total savings varies from 19% (1.24×) with 129
stages to 2% (1.02×) with 897 stages evaluated. For the PETS
sequence, shown in figure 5(b), loss is drastically reduced
for t > 129 stages. The maximum saving reached with this
sequence is 28% (1.38×).

In figure 5(c), we show the savings evolution varying the
number of stages evaluated for both sequences. Considering
a small number of stages for each detection window, the
computational savings is at most 23% (1.3×) in Oxford and
31% (1.45×) in PETS. The savings is modest because the
computational cost is mostly dominated by the total number
of negative windows evaluated, that decreases exponentially
with increasing t (the number of stages considered for the
linear cascade approximation). Linear cascade approximation
helps, but to achieve significant computational cost reduction
the total number of the candidate windows must be reduced.

B. Experiments with candidate windows proposal

We evaluated the performance of our candidate window
proposal model on the Oxford sequence for different values of
γ and grid dimensions. The results are shown in figure 6. Each
plot shows results for different grid resolutions (2 × 2, 4 × 4
and 6 × 6) and varying the speedup parameter γ. In general,

with all configurations we obtain a savings greater then 50%
(2×). For example, for a grid size of 2× 2, the minimum and
maximum saving values is 65% (2.85×) and 95% (19.44×),
respectively. Considering the savings in computation, the loss
in accuracy with respect to the baseline is very low at 10−1

fppi (under 0.5%). Increasing the grid resolution results in a
small performance drops with respect to the baseline. The grid
2 × 2 is the best configuration in terms of loss and savings.
This is due to the fact that, despite the large blocks in the 2×2
grid configuration, covariance expansion will ensure that the
Gaussian will still eventually cover the whole block.

C. Experiments with both strategies

In this section we evaluate the combination of both pro-
posed strategies on the Oxford and PETS sequence (see
figure 7). Results are shown for different values of γ and t
with a grid resolution of 2 × 2. On Oxford, with γ = 0.25
(4×) the maximum savings obtained respect to the baseline is
74% (3.78×), 9% more than the candidate window proposal
alone, with no loss. For PETS, with γ = 0.25 (4×) we obtain
a reduction of 81% (5.42×) with respect to the baseline, while
with γ = 0.0625 (16×) we reach the 91% (11.26×) of saving.
With both values of γ and t ≥ 513 the obtained curves are
the best in terms of accuracy with respect to the baseline, with
a loss under 5%. The combination of the proposed strategies
result in higher savings compared to the candidate windows
proposal strategy while sacrificing little in terms of accuracy.

D. Comparison with the state-of-the-art

In table I we show the performance obtained by our method
with respect to the state-of-the-art person detectors. Except the
DPM detector [14] that uses a SVM classifier with a part-
based model and is therefore slower, the rest of the strategies
employ a soft-cascade architecture. On the Oxford dataset our
strategies are very competitive with the ACF detector [2] in
terms of miss-rate but we obtain a savings of 12.73× using
both proposed strategies. Also, the miss-rate reached with any
of our proposed strategies is less than the baseline because
the number of detected false positive is reduced. On the
PETS dataset with our candidate windows proposal strategy
we obtain the lowest miss-rate value with respect to all the
other detectors with a savings of 3.37×. These results prove
the effectiveness of the proposed strategies.
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Fig. 6. ROC curves using candidate window proposal on Oxford sequence for a range of γ and grid sizes 2× 2 (a), 4× 4 (b), 6× 6 (c).
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Fig. 7. ROC curves for both strategies, with a grid size of 2× 2 and γ ∈ {0.25, 0.0625}, on both the Oxford (a-b) and PETS(c-d) sequences.

Oxford PETS
Detectors Miss-rate(%) Savings(δ) Miss-rate(%) Savings(δ)
DPM [14] 80 - 34 -
ACF [2] 97 1× 51 1×
Baseline 99 1× 9 1×
Linear Cascade App. 98.1 1.17× 10.4 1.28×
Candidate Windows Pro. 98.9 11.09× 7.4 3.37×
With both 98.5 12.73× 11.4 4.19×

TABLE I. COMPARISON WITH THE MAIN PERSON DETECTORS OF THE
STATE-OF-THE-ART. THE MISS-RATE SHOWN IS RELATIVE TO 10−1 FPPI.

VI. DISCUSSION

In this work we proposed two strategies to reduce the
computational complexity of a multi-scale pedestrian detector.
Both strategies are unsupervised, based only on region of
support information measured on a training set of unlabeled
images. Our first strategy linearly approximates soft cascades
so that only a fraction of stages must be evaluated to obtain an
(approximate) score. The second strategy builds a generative
model for candidate window proposal to reduce the number
of windows evaluated. The proposed techniques require only
a training set of images and a soft cascade classifier.

Our experiments demonstrate that both techniques are
effective at increasing the efficiency of detection while sacri-
ficing little in terms of accuracy. Linear cascade approximation
yields modest improvement in efficiency due to the fact
that the evaluation of negative windows dominates the total
computation time. Candidate window proposal instead yields
significant gains since it reduces the total number of candidate
detection windows considered.
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