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Abstract

This paper presents a method for indexing human ac-
tivities in videos captured from a wearable camera being
worn by patients, for studies of progression of the dementia
diseases. Our method aims to produce indexes to facilitate
the navigation throughout the individual video recordings,
which could help doctors search for early signs of the dis-
ease in the activities of daily living. The recorded videos
have strong motion and sharp lighting changes, inducing
noise for the analysis. The proposed approach is based on
a two steps analysis. First, we propose a new approach
to segment this type of video, based on apparent motion.
Each segment is characterized by two original motion de-
scriptors, as well as color, and audio descriptors. Second,
a Hidden-Markov Model formulation is used to merge the
multimodal audio and video features, and classify the test
segments. Experiments show the good properties of the ap-
proach on real data.

1. Introduction

Our society is aging, with a longer lifetime expectancy
come new challenges, one of them is to help the elderly keep

their autonomy as long as possible. The aging diseases re-
sult in a loss of autonomy. Dementia diseases of the elderly
have a strong impact on activities of daily living (ADL).
Medical studies [5] have shown that early signs of diseases
such as Alzheimer can be identified up to ten years before
the actual diagnostics. Therefore the analysis of possible
lack of autonomy in the ADL is essential to establish the
diagnostics as soon as possible and give all the help the pa-
tient and his relatives may need to deal with the disease. Un-
til now, the medical diagnostics are most of the time based
on an interview of the patient and the relatives. The answers
to a survey about how well the patient executes ADL allow
an evaluation of the patient’s situation. The main issue with
this methodology is the lack of objectivity of the patient and
his entourage.
The best way to determine the autonomy of one patient is to
analyze his ability to execute the ADL in his own environ-
ment. However, it can be complicated for a doctor to come
and watch the patient doing these ADL, as this would be a
very time consuming task. It can be interesting to record the
patient doing ADL with a camera. This is the idea of the
project IMMED 1 (Indexing Multimedia Data from wear-
able sensors for Diagnostics and treatment of Dementia) :

1. http://immed.labri.fr/
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to use a wearable camera to record the ADL [9] with a view
as close as possible to the patient’s view. Wearable cameras
have been used in the SenseCam project [6] for an auto-
matic creation of a visual diary. In the WearCam project [8]
a camera is strapped on the head of young children, the col-
lected data are then analyzed in order to diagnose autism. In
our context, the video brings an objective view of what the
patient is doing and may permit the doctor to give a better
evaluation of the patient’s situation. The doctor cannot visit
all patients and wait while they are doing the ADL. There-
fore, the videos will be recorded while the patients are vis-
ited by a medical assistant. The medical assistant will then
upload the video to a server, and the automatic analysis will
be fulfilled to index the ADL. The doctor will use these in-
dexes for an easier navigation through the video and will
then use the activities as a source of information to refine
the diagnosis.
In our previous works [9] and actual demonstrations [10]
we have already largely described the acquisition set-up and
the general framework of the project. In this paper we fo-
cus on the core of indexing method we propose, the motion
based segmentation and the HMM. HMMs have been suc-
cessfully applied to audio analysis [13] and in molecular
biology [15]. The application of HMMs to videos can be
whether at a low level, for cut detection [3], or at a higher
level aiming to reveal the structure according to a previously
defined grammar, such as the events of a tennis match [7].
In the HMM both are important : the adequate description
space (observations) on one hand, the state set and the con-
nectivity expressed by a state transition matrix on the other.
The contributions of this paper are in proposing adequate
HMM structure and also use of heterogeneous multimodal
descriptor space, which has never been done before, for the
best of our knowledge, in wearable video analysis. Hence,
in section 2 we will briefly describe the acquisition set-up
as it is today after several adjustments brought by medical
practitioners and information scientists. We also qualify the
very specific video acquired with this device. Section 3 de-
scribes the motion analysis and the motion based segmenta-
tion and section 4 presents the definition of the description
spaces. The structure of the HMM we designed is explained
in section 5. Experiments and results are shown in section 6
and conclusions and perspectives in section 7.

2. Video acquisition setup

2.1. The device

The video acquisition device should be easy to put on,
should stay in the same position even when the patient
moves strongly and bring as less discomfort as possible
to an aged patient. Regarding these constraints, a vest was
adapted to be the support of the camera. The camera is fixed
with hook-and-loops fasteners which allow the camera’s po-

sition to be adapted to the patient’s morphology.

2.2. Video characteristics

The videos obtained from wearable cameras are quite
different from the standard edited videos (having clean mo-
tion and cut into shots) which are usually subject to video
indexing methods. Here, the video is recorded as a long se-
quence where the motion is really strong since the camera
follows the ego-motion of the patient. This strong motion
may produce blur in frames, figure 1a. Moreover, the pa-
tient may face a light source, leading to sharp luminosity
changes, figure 1b and 1c. The camera has a wide angle
objective in order to capture a large part of the patient’s en-
vironment.

(a) Motion blur due to
strong motion.

(b) Low lighting while in
dark environment.

(c) High lighting while
facing a window.

FIGURE 1: Example of frames acquired with wearable cam-
era.

3 Motion analysis for the design of descrip-
tion space

In contrast to the work in [6] where the description space
is based on a key-framing of the video, our goal is to use
motion of the patient as one of the features. This choice
corresponds to the need to distinguish between various ac-
tivities of a patient which are naturally static (e.g. reading)
and dynamic (e.g. hoovering).

3.1 Global motion estimation

Since the camera is worn by a person the global mo-
tion observed in image plane can be called the ego-motion.
We model the ego motion by the first order complete affine
model and estimate it with a robust weighted least squares
by the method we reported in [2]. The parameters of (1) are
computed from the motion vectors extracted from the com-
pressed video stream.(

dxi

dyi

)
=

(
a1
a4

)
+

(
a2 a3
a5 a6

)(
xi

yi

)
(1)

Eq. 1 : Motion compensation vector, (xi, yi) being the co-
ordinates of a block center.



3.2 Motion-based segmentation

In order to establish a minimal unity of analysis which
may be considered as an equivalent to shots in our long se-
quence videos, we designed a motion based segmentation of
the video. The objective is to segment the video into differ-
ent viewpoints that the patient provides by moving through-
out his home.

3.2.1 Corner trajectories

To this aim, we compute the trajectories of each corner
using the global motion estimation previously presented.
For each frame the distance between the initial and the cur-
rent position of a corner is calculated. We denote by w the
image width and by s a threshold on the frame overlap rate.
A corner is considered as having reached an outbound po-
sition when it has at least once had a distance greater than
s ∗ w from its initial position in the current segment. These
boundaries are represented by red and green (when the cor-
ner has reached an outbound position) circles in figure 2.

(a) Corner trajectories while the per-
son is static.

(b) Corner trajectories while the per-
son moves to the left.

FIGURE 2: Example of corners trajectories.

3.2.2 Segment definition

Each segment aims to represent a single “viewpoint”.
This notion of viewpoint is clearly linked to the threshold s,
which defines the minimal proportion of an image which
should be contained in all the frames of the segment. We
define the following rules : a segment should contain a min-
imum of 5 frames and a maximum of 1000 frames, the end
of the segment is the frame corresponding to the time when
at least 3 corners have reached at least once an outbound po-
sition. The key frame is then chosen as the temporal center
of the segment, see examples in figure 3.

Hence the estimated motion model serves for two goals :
i) estimated motion parameters are used for the computa-
tion of dynamic features in the global description space and
ii) the key frames extracted form motion-segmented “view
points” are the basis for extraction of spatial features. We

FIGURE 3: An example of key frame (center) with the be-
ginning (left) and ending (right) frames of the segment.

will now focus on the definition of these two subspaces and
the design of the global description space.

4. Design of the description space

The motion is one of the most important information in
the videos studied. It represents the movements of the per-
son and in a longer term history characterizes whether the
action being done is dynamic or rather static.

4.1. Dynamic descriptors

4.1.1 Instant motion

The ego-motion is estimated by the global motion anal-
ysis presented in section 3. The parameters a1 and a4 are
the translation parameters. We limit our analysis to these
parameters, as in the case of wearable cameras, they ex-
press the dynamics of the behavior the best, and pure affine
deformation without any translation is practically never ob-
served. A histogram of the energy of each translation pa-
rameter Htpe is built according to Eq 2, defining a step sh
and using a log scale. This histogram characterizes the in-
stant motion. It is computed for each frame and then aver-
aged over all the frames of a segment.

Htpe[i]+ = 1 if
log(a2) < i× sh for i = 1

(i− 1)× sh ≤ log(a2) < i× sh for i = 2..Ne − 1
i× sh ≤ log(a2) for i = Ne

Eq. 2 : Translation parameter histogram, a is either a1 or a4.

We denote Htpe(x) the histogram of the log energy of
horizontal translation, and Htpe(y) the histogram of the en-
ergy of vertical translation observed in image plane. The
number of bins is chosen the same Ne = 5, the threshold
sh is chosen in such a way that the last bin corresponds to
the translation of the image width or height respectively.

4.1.2 Motion history

Another element to distinguish static and dynamic activ-
ities is the motion history. On the contrary to the instant mo-
tion we design it to characterize long-term dynamic activi-



ties, such as walking ahead, vacuum cleaning, etc... The es-
timation of this is done by computing a “cut histogram” Hc.
We design it as a histogram of i = 1 − Nc bins. Each bin
H(i) contains the number of cuts (according to the motion
based segmentation presented in section 3) that happened in
the last 2i frames. The number of bins Nc is defined as 8 in
our experiments providing a history horizon of 256 frames,
which represent almost 9 seconds for our 30 fps videos.

4.2. Static descriptors

Static descriptors are computed on the extracted key
frames representing each segment. In this choice we seek
for the global descriptors which characterize the color
of frames still preserving some spatial information. The
MPEG-7 Colour Layout Descriptor (CLD) proved to be a
good compromise for both [12]. It is computed on each key
frame and the classical choice [14] of selecting 6 parameters
for the luminance and 3 for each chrominance was adopted.

4.3. Audio descriptors

The particularity of our contribution in the design of a
description space consists in the use of low-level audio de-
scriptors. Indeed, in the home environment, with ambient
TV audio track, noise produced by different objects the pa-
tient is manipulating, his conversations with the persons, are
good indicators of activity and its location.
In order to characterize the audio environment, different sets
of features are extracted. Each set is characteristic of a par-
ticular sound : speech, music, noise and silence [11]. Energy
is used for silence detection. 4 Hz energy modulation and
entropy modulation give voicing information, being specific
to the presence of speech. The number of segments per sec-
ond and the segment duration, resulting from a “Forward-
Backward” divergence algorithm [1], are used to find har-
monic sound, like music. Spectral coefficients are proposed
to detect noise : percussion and periodic sounds (examples :
footstep, flowing water, vacuum cleaner, etc.).

4.4. Description space

Hence for description of the content recorded with wear-
able cameras we designed three descriptors subspaces :
the “dynamic” subspace has 18 dimensions, and contains
the descriptors D=(Htpe(x),Htpe(y),Hc) ; the “static” sub-
space contains l = 12 CLD coefficient C=(c1, ... ,cl) ; the
“audio” subspace contains k = 5 audio descriptors p=(p1,
... ,pk).
We design the global description space in an “early fusion”
manner concatenating all descriptors in an observation vec-
tor o in Rn space with n = 35 dimensions when all de-
scriptors are used. Thus designed the description space is
inhomogeneous. We also study the completeness and redun-

dancy of this space in a pure experimental way with regard
to the indexing of activities in Section 6.

5. Design of an HMM structure

If we consider our problem of recognition of daily ac-
tivities in the video in a simplistic manner, we can draw an
equivalence between an activity and a hidden state of an
HMM. The connectivity of the HMM then can be defined
by the spatial constraints of patient’s environment. The eas-
iest way is to design a fully connected HMM and train the
inherent state-transition probabilities form the labeled data.
Unfortunately, the ADL we consider are very much hetero-
geneous and often very complex. Hence we propose a two-
level HMM. The activities meaningful for medical practi-
tioners are encoded in the top-level HMM. It contains the
transitions between “semantic” activities. A bottom level
HHM models an activity with m non-semantic states. This
parameter m is defined as 3, 5 or 7 in our experiments.
The overall structure of the HMM is presented in figure 4,
with 3 states at the bottom level. Dashed circled states are
non emitting states. The HMMs are built using the HTK
library 2.
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FIGURE 4: The HMM structure.

5.1. Top level HMM

In this work, the actions of interest are the ADLs “mak-
ing coffee”, “making tea”, “washing the dishes”, “dis-
cussing”, “reading” and another activity for all the rest
which is not relevant to the ADLs of interest named “NR”.
The top level HMM represents the relations between these

2. HTK Web-Site : http://htk.eng.cam.ac.uk



actions. In this work no constraints were specified over the
transitions between these activities since such restrictions
did not apply in our application, hence we design the top
level as a fully connected HMM.

5.2. Bottom level HMM

Most of the activities defined in the above section are
complex and could not easily be modeled by one state. For
each activity in the top level HMM a bottom level HMM
is defined. The bottom level HMM is composed of m non
semantic states. Each state models the observation vector o,
see section 4, by a Gaussian Mixture Model (GMM). The
GMM and the transitions matrix of all the bottom level
HMM are learned using the classical Baum Welsh algo-
rithm with labeled data corresponding to each activity.

6. Experiments

Today, no rich corpus of data from wearable video set-
tings has been publicly released. We can reference the
dataset [4] for a very limited task of behavior in the kitchen,
where subjects are cooking different recipes. The only cor-
pus recorded for ADL is ours. This corpus of 28 hours of
videos contains heterogeneous activities, for this paper we
used only a part of it to ensure multiple occurrences of
activities for the supervised learning. The dataset used for
this experiment comprises 6 videos shot in the same labora-
tory environment, containing a total of 81435 frames which
represent more than 45 minutes. In these videos 6 activi-
ties of interest appear : “working on computer”, “reading”,
“making tea”, “making coffee”, “washing the dishes”, “dis-
cussing” and we added a reject class called “NR”. It rep-
resents all the moments which do not contain any of the
activities of interest. The activities of interest are the ones
present in the survey the doctors were using until now. We
use a cross validation, the HMMs models of activities were
learnt on all but one video and tested on this excluded video.
We will first discuss the influence of the segmentation pa-
rameters and the choice of the description space and finally
analyze our results on activities recognition.

6.1. Segmentation analysis

The influence of the segmentation threshold is not as sig-
nificant as we expected but figure 5 shows that the accuracy
starts to decrease for threshold values higher than 0.3. In-
deed, the higher the threshold is, the probability of having a
segment containing different activities increases. The activ-
ity “making coffee” and “washing the dishes” may follow
each other in a short time. Moreover, the higher the thresh-
old is the less data are available for the HMM training. This
explains the fall to zero in some curves when there is not
enough data to train the HMM.
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FIGURE 5: Description space choice and segmentation
threshold influence over accuracy.

6.2. Study of the description space

The description space is defined as one of the possible
combinations of the descriptors presented in section 4. Fig-
ure 5 presents the average accuracy for different combina-
tions of descriptors as a function of the segmentation thresh-
old parameter. The performances of the HtpeCLDAudio
(yellow) and HtpeAudio (pink) descriptor indicate the pos-
itive contribution of the audio descriptor.
The CLD descriptor seems to improve the results for low
segmentation thresholds, all the six best description space
configurations in figure 8, for threshold less than 0.1, con-
tains the CLD descriptor. This is rather normal since larger
the segment is, less the CLD of the key frame will be mean-
ingful regarding the content of the segment.
The full description space HcHtpeCLDAudio (gray
dashed curve) performs really well for the 0.1 threshold.
Being more complex this description space also needs more
training data, therefore with higher thresholds the perfor-
mance falls.

6.3. Activity recognition

6.3.1 HMM analysis

In our experiments we have found that with a higher
threshold less data become available for the HMM train-
ing which is a significant issue. Therefore, with less data
available only the configuration with 3-states still performs
well, see figure 6. The 7-states configuration falls to zero
for threshold higher than 0.5, and the 5-states configuration
is quite unstable for threshold values higher than 0.65.

6.3.2 Activities recognition

In order to evaluate the ADL recognition we have chosen
one of the average recognition results presented in figure 7.
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FIGURE 7: Results of the analysis.

The “reading” and “discussing” activities are not present
and are not detected for this video. The main confusions
result in the activities “making coffee” and “washing the
dishes”. These activities are similar in terms of environment
as well as motion and audio characteristics. The activity
“working on computer” is hard to define with the descrip-
tion space HcHtpeAudio presented, therefore some misde-
tections appear.

7. Conclusions and perspectives

In this paper, we have presented a method for indexing
video sequences acquired from a wearable camera. We have
proposed an original approach to segment the video into
temporally consistent viewpoints, thanks to apparent mo-
tion analysis. This segmentation has been used to define
new motion descriptors. Motion, color and audio features
have been used as multimodal observation in a hierarchical
Hidden Markov Model, applied to the task of recognizing a
set of activities of interest.
The confusion amongst activities show that the global de-
scriptors may be close for different activities. Since the per-
son does not interact with the same objects for different ac-

tivities, our future work will be to detect the objects of in-
terest and the eventual interaction of the person with them
to better characterize the ADLs. Despite the experimental
data set has not been very large yet, this research gave a
“proof of concept” and opens tremendous perspectives for
our future work.
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