From re-identification to identity inference:
labelling consistency by local similarity constraints
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Abstract In this chapter we introduce the problem of identity inference as a generaliza-
tion of person re-identification. It is most appropriate to distinguish identity inference
from re-identification in situations where a large number of observations must be identi-
fied without knowing a priori that groups of test images represent the same individual.
The standard single- and multi-shot person re-identification common in the literature
are special cases of our formulation. We present an approach to solving identity in-
ference by modeling it as a labeling problem in a Conditional Random Field (CRF).
The CRF model ensures that the final labeling gives similar labels to detections that
are similar in feature space. Experimental results are given on the ETHZ, i-LIDS and
CAVIAR datasets. Our approach yields state-of-the-art performance for multi-shot re-
identification, and our results on the more general identity inference problem demon-
strate that we are able to infer the identity of very many examples even with very few
labelled images in the gallery.

Key words: Re-identification, identity inference, conditional random fields, video
surveillance.

1 Introduction

Person re-identification is traditionally defined as the recognition of an individual at dif-
ferent times, possibly imaged from different camera views and/or locations, and con-
sidering a large number of candidate individuals in a known gallery. It is a standard
component of multi-camera surveillance systems as it is a way to associate multiple
observations of the same individual over time. Particularly in scenarios in which the
long-term behaviour of persons must be characterized, accurate re-identification is es-
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sential. In realistic, wide-area surveillance scenarios such as airports, metro and train
stations, re-identification systems should be capable of robustly associating a unique
identity with hundreds, if not thousands, of individual observations collected from a
distributed network of many sensors.

Re-identification performance has traditionally been evaluated as a retrieval prob-
lem. Given a gallery consisting of a number images of known individuals, for each test
image or group of test images of an unknown person the goal of re-identification is to re-
turn a ranked list of individuals from the gallery. Configurations of the re-identification
problem are generally categorized according to how much group structure is available
in the gallery and test image sets. In a single-shot image set there 1s no grouping infor-
mation available. Though there might be multiple images of an individual, there is no
knowledge of which images correspond to that person. In a multi-shot image set, on the
other hand, there is explicit grouping information available. That is, it is known which
images correspond to the same individual, though of course the identities corresponding
to each group are not known and the re-identification problem is to determine them.

The categorization of re-identification scenarios into multi- and single-shot configu-
rations is useful for establishing benchmarks and standardized datasets for experimen-
tation on the discriminative power of descriptors for person re-identification. However,
these scenarios are not particularly realistic with respect to many real-world application
scenarios. In video surveillance scenarios, for example, it is more common to have a
few individuals of interest and to desire that all occurrences of them be labelled. In this
case the number of unlabelled test images to re-identify is typically much larger than
the number of gallery images available. Another unrealistic aspect of traditional person
re-identification is its formulation as a retrieval problem. In most video surveillance
applications, the accuracy of re-identification at rank-1 is the most critical metric and
higher ranks are of much less interest.

Based on these observations, in this chapter we describe a generalization of person
re-identification which we call identity inference. The identity inference formulation is
expressive enough to represent existing single- and multi-shot scenarios, while at the
same time also modelling a larger class of problems not considered in the literature. In
particular, we demonstrate how identity inference models problems where only a few
labelled examples are available, but where identities must be inferred for a large number
of probe images. In addition to describing identity inference problems, our formalism is
also useful for precisely specifying the various multi- and single-shot re-identification
modalities in the literature. We show how a Conditional Random Field (CRF) can then
be used to efficiently and accurately solve a broad range of identity inference problems,
including existing person re-identification scenarios as well as more difficult tasks in-
volving a lot of test images.

In the next section we review the literature on person re-identification. In section 3
we introduce our formulation of the identity inference problem and in section 4 pro-
pose a solution based on label inference in a Conditional Random Field. Section 5
contains a number of experiments illustrating the effectiveness of our approach for both
the re-identification and identity inference problems. We conclude in section 6 with a
discussion of our results.



From re-identification to identity inference 3

2 Related work

Person re-identification has applications in tracking, target re-acquisition, verifica-
tion and long-term activity modelling. The most popular approaches to person re-
identification are appearance-based techniques which must overcome problems such
as varying illumination conditions, poses changes and target occlusion. Within the
broad class of appearance-based approaches to person re-identification, we distinguish
learning-based methods, which generally require a training stage in which statistics of
multiple images of each person is used to build a discriminative models of persons to
be re-identified, from direct methods which require no initial training phase.

The majority of existing research on the person re-identification problem has concen-
trated on the development of sophisticated features for describing the visual appearance
of targets. In [19] were introduced discriminative appearance-based models using Par-
tial Least Squares (PLS) over texture, gradients and color features. The authors of [13]
use an ensemble of local features learned using a boosting procedure, while in [1] the
authors use a covariance matrix of features computed in a grid of overlapping cells.
The SDALF descriptor introduced in [11] exploits axis symmetry and asymmetry and
represents each part of a person by a weighted color histogram, maximally stable color
regions and texture information from recurrent highly-structured patches. In [8] the au-
thors fit a Custom Pictorial Structure (CPS) model consisting of head, chest, thighs
and legs part descriptors using color histograms and Maximally Stable Color Region
(MSCR). The Global Color Context (GCC) of [7] uses a quantization of color measure-
ments into color words and then builds a color context modeling the self-similarity for
each word using a polar grid. The Asymmetry-based Histogram Plus Epitome (AHPE)
approach in [3] represents a person by a global mean color histogram and recurrent
local patterns through epitomic analysis. A common feature of most appearance-based
approaches is that they compute an aggregate or mean appearance model over multiple
observations of the same individual (for multi-shot modalities).

The approaches mentioned above concentrate on feature representation and not
specifically on the classification or ranking technique. An approach which does con-
centrate specifically on the ranking approach is the Ensemble RankSVM technique
of [17], which learns a ranking SVM model to solve single-shot re-identification prob-
lems. The Probabilistic Distance Comparison (PRDC) approach [24] introduced a com-
parison model which maximizes the probability of a pair of correctly matched images
having a smaller distance than that of an incorrectly matched pair. The same authors
in [22] then model person re-identification as a transfer ranking problem where the goal
is to transfer similarity observations from a small gallery to a larger, unlabelled probe
set. Metric learning approaches in which the metric space is adapted to the gallery data
have also been successfully applied recently to the re-identification problem [10, 16].

We believe that in realistic scenarios many unlabelled images will be available while
only few detections with known identities will be given, which is a scenario not covered
by the standard classification of single- and multi-shot cases. We propose a CRF model
that is able to encode a ““soft grouping” property of unlabelled images. Our application
of CRFs to identity inference is similar in spirit to semi-supervised techniques based on
the graph Laplacian like manifold ranking [26, 6]. These techniques, however, do not
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Fig. 1: Re-identification and identity-inference protocols.

immediately generalize to multi-shot modalities and it is unclear how to use them for
batch re-identification of more than one probe image at a time.

3 Identity inference as generalization of re-identification

In this section we give a formal definition of the re-identification and identity inference
problems. The literature on person re-identification considers several different configu-
rations of gallery and test images. The modality of a specific re-identification problem
depends on whether the gallery and/or test subsets contain single or multiple instances
of each individual. Here we consider each modality in turn and show how each can be
represented as an instance of our definition of re-identification. A summary of the differ-
ent protocols is given in figure 1. Despite the importance of the problem, there is much
confusion about how each of the classical re-identification modalities are defined. One
of our goals in this chapter is to formally define how, given a set of images of people
extracted from video sequences, each type of re-identification problem is determined.
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Let Z ={1,...N} be alabel set for a re-identification scenario, where each element
represents a unique individual appearing in a video sequence or collection of sequences.
Given a number of instances (images) of individuals from . detected in a video col-
lection:

fZ{Xi“:l...D},

we assume that each image x; of an individual is represented by a feature vector
x; = x(x;) and that the label corresponding to instance x; is given by y; = y(x;). Note
that we interchangeably use the implicit notation y; and x; for the label and feature
vector corresponding to image x;, or the explicit functional notation y(x;) and x(x;), as
appropriate.

An instance of a re-identification problem, represented as a tuple #Z = (¢,.9), is
completely characterized by its gallery and test image sets (¢ and .7, respectively).
Formally, the gallery images are defined as:

¢ ={9;|j=1...N},where 9; C {x|y(x) = j}.

That is, for each individual i € .Z, a subset of all available images is chosen to form his
gallery ¢;. The set of test images is defined as:

T ={F|j=1..M} C P (7),

where & is the powerset operator (i.e. Z(I) is the set of all subsets of .#). We further
require for all .7; € .7 that x,xX' € .7; = y(x) = y(x’) (sets in .7 have homogeneous
labels), and .J; € T = J;N¥Y; =0,Vi € {1...N} (the test and gallery sets are disjoint).
A solution to an instance of a re-identification problem is a mapping from the test
images 7 to the set of all permutations of .Z.

3.1 Re-identification scenarios

In this section we formally define each of the standard re-identification modalities
commonly discussed in the literature. Though we define single test scenarios for each
modality, in practice each scenario is repeated over a number of random trials to evalu-
ate performance.

Single-versus-all re-identification (SvsAll) is often referred to as simply single-shot
re-identification or single-versus-single (SvsS) but could better be described as single-
versus-all (SvsAll)! re-identification (see figure 1). In the SvsAll re-identification sce-
nario a single gallery images is given for each individual, and all remaining instances
of each individual are used for testing: M = D — N. Formally, a single-versus-all re-
identification problem is a tuple Zsysan = (¢, .7 ), where:

! We prefer the SvsAll terminology as the SvsS terminology has been misinterpreted at least once in
the literature.
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¢; = {x}for some x € {x | y(x) = j}, and
T ={{x} |xe A\Yand y(x) = j}.

In a single-versus-all instance of re-identification the gallery sets are all singletons,
containing only a single example of each individual.

This re-identification modality was first described by Farenzena et al. [11] and
Schwartz et al. [19]. Note that despite its simplicity, this configuration is susceptible
to misinterpretation. At least one author has interpreted the SvsS modality to be one in
which a single gallery image per subject is used, and a single randomly chosen probe
image is also chosen for each subject [7]. SvsAll re-identification is a realistic model of
scenarios where no reliable data association can be performed between observations be-
fore re-identification is performed. This could be the case, for example, when very low
bitrate video is processed or in cases where imaging conditions do not allow reliable
detection rates.

Multi-versus-single shot re-identification (MvsS) is defined using G gallery images
of each person, while each of the test sets .7; contains only a single image. In this case
M = N, as there are exactly as many singleton test sets .7; as persons depicted in the
gallery. Formally, a MvsS re-identification problem is a tuple Zmyss = (¢, 7 ), where:

¢, C {x|y(x)=j} and |4;| = G Vj and
J; = {x} forsome x ¢ ¥; s.t. y(x) = j.

The MvsS configuration is not precisely a generalization of the SvsAll person re-
identification problem in that, after selecting G gallery images for each individual, only
a single test image is selected to form the test sets .7;.

The MvsS re-identification scenario has been used in only a few works in the liter-
ature [11, 7]. We do not consider it to be an important modality, though it might be an
appropriate model of verification scenarios where a fixed set of gallery individuals are
enrolled and then must be unambiguously re-identified on the basis of a single image.

Multi-versus-multi shot re-identification (MvsM) is the case in which the gallery
and test sets of each person both have G images. In this case M = N, there is again as
many gallery sets as test sets. After selecting the G gallery images for each of the N
individuals, only a fraction of the remaining images of each person are used to form
the test set. Formally, a MvsM re-identification problem is a tuple Zmvsm = (¢, 7)),
where:

¢, C {x|y(x)=j} and |¥4;| = G Vj and
T C{x|y(x)=j andx ¢ ¥;} and |T;| =G V.

Note that the MvsM configuration is not a generalization of the SvsAll case in which
all of the available imagery for each target is used as test imagery. The goal in MvsM
re-identification is to re-identify each group of test images, leveraging the knowledge
that images in each group are all of the same individual.
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The MvsM re-identification modality is the most commonly reported one in the liter-
ature [11, 3, 8, 1]. It is representative of scenarios in which some amount of reliable data
association can be performed before re-identification. However, it is not a completely
realistic formulation since data association is never completely correct and there will
always be uncertainty about group structure in probe observations.

3.2 Identity inference

Identity inference addresses the problem of having few labeled images while desiring to
label many unknown images without explicit knowledge that groups of images repre-
sent the same individual. The formulation of the single-versus-all re-identification falls
within the scope of identity inference, but neither the multi-versus-single nor the multi-
versus-multi formulations are a generalization of this case to multiple gallery images.
In the MvsS and MvsM cases the test set is either a singleton for each person (MvsS)
or a group of images (MvsM) of the same size as the gallery image set for each person.
Identity inference could be described as a multi-versus-all configuration. Formally, it is
a tuple Zyvsan = (¢, .7), where:

¢, C {x|y(x)=j} and |%;| = G and
T ={{x} |x€ A\¥ and y(x) = j}.

In instances of identity inference a set of G gallery images is chosen for each individual.
All remaining images of each individual is then used as an element of the test set without
any identity grouping information. As in the SvsAll case, the test images sets are all
singletons.

Identity inference as a generalization of person re-identification was first introduced
in [14]. It encompasses both SvsAll and MvsAll person re-identification and repre-
sents, in our opinion, one of the most realistic scenarios in practice. The re-identification
modalities accurately model situations where an operator is interested in inferring the
identity of past, unlabeled observations on the basis of very few labeled examples of
each person. In practice, the number of labeled images available is significantly less
than the number of images for which labels are desired.

4 A CRF model for identity inference

Conditional Random Fields (CRFs) have been used to model the statistical structure of
problems such as semantic image segmentation [4] and stereo matching [18]. In this
section we show how we model the identity inference problem as a minimum energy
labelling problem in a CRF.

A CREF is defined in general case by a graph 4 = (¥, &), a set of random variables
% ={Y;| j=1...|V|} which represent the statistical structure of the problem being
modelled, and a set of possible labels .Z. The vertices ¥ index the random variables in
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% and the edges & encode the statistical dependence relations between the random vari-
ables. The labelling problem is then to find an assignment ¥y of labels to nodes that min-
imizes an energy function E over possible labellings y* = (y¥) li'lz ¥ = argminy E(y").

The energy function E(y*) is defined as:
E(y) =) i) +24 Y wi07.)), (1)

=4 (i,j)e&

where ¢;(y}) is a unary data cost encoding the penalty of assigning label y; to vertex i
and y;; (yjf,y;f) is a binary smoothness cost representing the conditional penalty of as-
signing labels y; and y}f respectively to vertices i and j. The parameter A in equation (1)
controls the trade-off between data and smoothness costs.

To minimize properly defined energy functions [15] and find an optimal labelling ¥y
in a CREF, the graph cut approach has been shown to be competitive [20] against other
methods proposed in the literature such as Max-Product Loopy Belief Propagation [12]
and Tree-Reweighted Message Passing [23]. The multi-label problem is solved by iter-
ating the a-expansion move [5] where the binary labelling is expressed as each node
either keeping its current label or taking the label o selected for the iteration. In all
experiments we use the graph cut approach to minimizing the energy in equation (1).
If higher ranks are desired, an inference algorithm like loopy belief propagation that
returns the marginal distributions at each node can be used [12]. We feel that rank-1
precision is the most significant performance measure, and found loopy belief propaga-
tion to be many times slower than graph cuts on our inference problem.

CREF topology: We can map an identity inference problem % = (¢,.7) onto a CRF
by defining the vertex and edge sets 7" and & in terms of the gallery and test image
sets defined by ¢ and 7. We have found two configurations of vertices and edges to
be useful for solving identity inference problems. The first uses vertices to represent
groups of images in the test set .7 and is particularly useful for modelling MvsM re-
identification problems:

N
YV = U J;and & = {(x,-,xj) | xi,xj € ] for some l}.
i=1

The edge topology in this CRF is completely determined by the group structure as
expressed by the 7.

When no identity grouping information is available for the test set, as in the gen-
eral identity inference case as well as in SvsAll re-identification, we instead use the
following formulation of the CRF:

VY =Iand & = U {(Xi,xj) | x; EkNN(x,-)},
xie“//

where the KNN(x;) maps an image to its k most similar images in feature space. Note
that we hence treat equally training and test images when building &. The topology of
this CRF formulation, in the absence of explicit group information, uses feature simi-
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Fig. 2: Illustrations of the CRF topology for the MvsM (a) and SvsAll (b) modali-
ties. Filled circles represent gallery images, unfilled circles probes. Color indicates the
ground truth label.

larity to form connections between nodes. Illustrations of the topology for the MvsM
and SvsAll scenarios are given in figure 2.

Data and smoothness costs: The unary data cost determines the penalty of assigning
label y! to vertex i given X(x;), the observed feature representation of image x;. We
define it as:

¢i(v;) = min [[x(x) —x(x;)][2. 2)
xegy;k
That is, the cost of assigning label y; is proportional to the minimum L2-distance be-
tween the feature representation of image x; and any gallery image of individual y;. The
data cost 1s L.1-normalized for each vertex i, and hence is a cost distribution over the
labels. The data cost can be seen as the individual assignment cost.

We use the smoothness cost y;; (y7, y}‘) to ensure local consistency between labels in
neighbouring nodes, it is composed of a label cost y(y7, yj) and a weighting factor w;;:

vii(vi5y7) = wiw(yi,5), (3)
0 ify; =y;
1 - / :
xlggy:f

J

The label cost l//(yj-‘,y}"-) depends only on the labels. The more similar two labels
are in terms of the available gallery images for them, the lower the cost for them to
coexist in a neighbourhood of the CRF. The label cost are L1-normalized, and thus is
a cost distribution over all labels. Note that the label cost is fixed to 0 if y; = y}f (see
equation (4)). The weighting factors w;; allow the smoothness cost between nodes i
and j to be flexibly controlled according to the problem at hand. In the experiments
presented in this chapter, we define the weights w;; from equation (3) between vertices
i and j in the CRF in terms of feature similarity:
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wij = exp(—|[x(x;) —x(x;)][2)- (5)

This definition gives a higher cost to a potential labelling y* that labels similar images
differently. But as the similarity between nodes decreases, so does the cost of keeping
these two different labels. Hence, our method would still allow connected nodes to
share different labels but will tend to discourage this situation especially for very similar
images and/or very different identities.

5 Experimental results

In this section we describe a series of experiments we performed to evaluate the ef-
fectiveness of the approach described in section 4 for solving identity inference prob-
lems. In the next section we describe the three datasets we use in all experiments and
the feature descriptor we use to represent appearance. In section 5.2 we report on the
re-identification experiments performed on these three datasets, and in section 5.3 we
report results for identity inference.

Note that in all experiments we only evaluate performance at rank-1 and not across
all ranks (as is done in some re-identification works). We believe that rank-1 perfor-
mance, that is classification performance, is the most important metric for person re-
identification since it is indicative of how well fully-automatic re-identification per-
forms. Consequently, all plots in this section are not CMC curves, but rather plots of
rank-1 re-identification accuracies for various parameter settings.

5.1 Datasets and feature representation

We evaluate the performance of our CRF approach on a variety of commonly used
datasets for re-identification. To describe the visual appearance of images in gallery
and probe sets we use a simple descriptor that captures color and shape information.

5.1.1 Datasets

For evaluating identity inference performance we are particularly interested in test sce-
narios where there are many images of each test subject. However, most publicly avail-
able datasets for re-identification possess exactly the opposite property in that they con-
tain very few images per person. The VIPER [13] dataset only provides a pair of images
for each identity and thus no meaningful structure can be defined for our approach. An-
other popular dataset for re-identification is 1-LIDS [25] which has on average 4 images
per person. Although this is a rather small number of images per person we want to
demonstrate the robustness of our approach also on this dataset. The most interesting
publicly available datasets for our approach are CAVIAR [8], which contains between
10 and 20 images for each person extracted from two different view of an indoor envi-
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Table 1: Re-identification dataset characteristics.

11

ETHZ1 | ETHZ2 | ETHZ3 | CAVIAR | i-LIDS

Number of cameras 1 1 1 2 3
Environment | Outdoor | Outdoor | Outdoor | Indoor Indoor
Number of identities 83 35 28 72 119

Minimun number of images/person 7 6 5 10 2
Average number of images/person 58 56 62 17 4
Maximun number of images/person 226 206 356 20 8

Average detection size | 60 x 132 | 63 x 135 | 66 x 148 | 34 x 81 |68 x 175

ronment, and the ETHZ [19] dataset, which consists of three video sequences, where on
average each person appears in more than 50 images. The characteristics of the selected
datasets are summarized in table 1 and some details are given below:

e ETHZ. The ETHZ Zurich dataset [19] consists of detections of persons extracted
from three sequences acquired outdoors. This dataset is divided in distinct datasets,
corresponding to three different sequences in which different persons appear.

1. The ETHZ1 sequence contains images of 83 persons. The number of detections
per person ranges from 7 to 226, the average being 58. Detections have an average
resolution of 60 x 132.

2. ETHZ2 contains images of 35 persons. The number of detections per person
ranges from 6 to 206, with an average of 56. This sequence seems to have been
recorded on a bright, sunny day and the strong illumination tends to partially wash
out differences in appearance, making this sequence one of the most difficult.

3. ETHZ3 contains images of 28 persons, with the number of detections per person
ranging between 5 and 356 (62 on average). The resolution of each detection
is quite high (66 x 148), facilitating better description of each one. The small
number of persons, the high resolution and the large number of images per person
make this sequence the easiest of the three ETHZ datasets.

e CAVIAR. The CAVIAR dataset consists of several sequences recorded in a shopping
center. It contains 72 persons imaged from two different views and was designed to
maximize variability with respect to resolution changes, illumination conditions and
pose changes. As detailed in table 1, the number of images per person is either 10
or 20 with an average of 17. While the number of persons, cameras and detections
make this dataset interesting, the very small average resolution of 34 x 81 makes it
difficult to extract discriminative features.

e i-LIDS. The i-LIDS dataset consists of multiple camera views from a busy airport
arrival hall. It contains 119 people imaged in different lighting conditions and most
of the time with baggage that in part occlude the person. The number of images
per person is low, with a minimum of 2, a maximum of 8 and an average of 4. The
average resolution of the detections (68 x 175) is rather high, especially with respect
to the other datasets.
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5.1.2 A descriptor for re-identification

In our experiments we use a descriptor based on both color and shape information
that requires no foreground/background segmentation and does not rely on body-part
localization. Given an input image of a target, it is resized to a canonical size of 64 x 128
pixels with coordinates between [—1,1] and origin (0,0) at the center of the image.
Then we divide it into overlapping horizontal stripes of 16 pixels in height and from
each stripe we extract an RGB histogram. The use of horizontal stripes allows us to
capture the vertical color distribution in the image, while overlapping stripes allow us to
maintain color correlation information between adjacent stripes in the final descriptor.
We equalize all RGB color channels before extracting the histogram. Histograms are
quantized to 4 x 4 x 4 bins.

Descriptors of visual appearance for person recognition can be highly susceptible to
background clutter, and many approaches to person re-identification use sophisticated
background modeling techniques to separate foreground from background signals [11,
2, 3]. We use a more straightforward approach that weights the contribution of each
pixel to its corresponding histogram bin according to an Epanechnikov kernel centered
on the target image:

K(x.y) = {%(1(%)2%)2) it ()2 + (2 <1 ©

0 otherwise

where W and H are, respectively, the width and height of the target image. This discards
(or diminishes the influence of) background information and avoids the need to learn a
background model for each scenario. To the weighted RGB histograms we concatenate
a set of Histogram of Oriented Gradients (HOG) descriptors computed on a grid over
the image as described in [9]. The HOG descriptor captures local structure and texture
in the image that are not captured by the color histograms.

The use of the Hellinger kernel, that is a simple application of the square root to
all descriptor bins, is well known in the image classification community [21] and helps
control the influence of dimensions in the descriptor that tend to have disproportionately
high values with respect to the others. In preliminary experiments we found this to
improve robustness of Euclidean distances between descriptors and we therefore take
the square root of all histogram bins (both RGB and HOG) to form our final descriptor.

5.2 Multi-shot re-identification results

To evaluate our approach in comparison with other state-of-the-art methods [11, 8§,
3], we performed experiments on each dataset described above for the MvsM re-
identification scenario. We evaluate performance for galleries varying in size: 2, 5 and
10 images per person for ETHZ; 2, 3 and 5 images per person for CAVIAR; and 2 and
3 images per person for i-LIDS.
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Note that grouping information in the test set is explicitly encoded in the CRF. Edges
only link test images that correspond to the same individual, and one test images is
connected to all other test images of that individual. In these experiments we fix A = 1
in the energy function of equation (1), and the weight on the edges is defined according
to the features similarity as detailed in equation (5).

Results for MvsM person re-identification are presented in figure 3a, 3c and 3e for
ETHZ, figure 4a for CAVIAR, and figure 5a for i-LIDS. The NN curve in these figures
corresponds to labelling each test image with the nearest gallery image label without
exploiting group knowledge, while the GroupNN approach exploits group knowledge
by assigning each group of test images the label for which the average distance between
test images of that group and gallery individuals of that label is minimal. We refer to
our approach as “CRF” in all plots, and for each configuration we randomly select the
gallery and test images and average performance over ten trials.

5.2.1 Multi-shot re-identification performance on ETHZ

For the MvsM scenarios on ETHZ we tested M € {2,5,10}. We now detail results on
each sequence and compare with the state-of-the-art when available.

ETHZ1: Performance on ETHZ1 (figure 3a) starts at 84% accuracy at rank-1 for the
simple NN classification approach and at 91% for both the GroupNN and our CRF
approach for M = 2. Using 5 images, GroupNN and the CRF reach an accuracy of about
99.2%. The state-of-the-art on ETHZ1 for M = 5 is CPS at 97.7%. With 10 gallery
and test images per subject, the CRF approach reachs 99.6% accuracy while the NN
classification peaks at 97.7%. The SDALF approach obtains 89.6% on this scenario.

ETHZ2: On ETHZ2 (figure 3c), which is the most difficult of the ETHZ datasets, per-
formance at M = 2 starts at 81.7% for the simple NN baseline and 90% for both the
GroupNN and our CRF approach. Using 5 images, methods exploiting group knowl-
edge reach 99.1%. The state-of-the-art on this dataset is SDALF at 91.6%, AHPE at
90.6%, and CPS which reaches 97.3%. Finally, when using 10 images for the gallery
and test sets, methods using grouping knowledge stays at 99.1%. Note that, as with
ETHZ1, SDALF performance at M = 10 is less than at M = 5 with 89.6% rank-1 accu-
racy.

ETHZ3: On ETHZ3 (figure 3e), which is the “easiest” of the ETHZ datasets, perfor-
mance start at 91.4% rank-1 accuracy for the simple NN baseline and at 96.8% for both
the groupNN and our CRF approach with M = 2. The NN classification reaches 97%
using 5 images and 99.3% using 10 images. Methods using group knowledge saturate
the performance on this dataset for both 5 and 10 images. The SDALF approach obtains
93.7% and 89.6% accuracy using 5 and 10 images, respectively. For M = 5, the AHPE
approach obtains 94% while the CPS method arrives at 98% rank-1 accuracy.
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Fig. 3: MvsM (left column) and SvsAll and MvsAll (right column) re-identification
accuracy on ETHZ. Note that these are notr CMC curves, but are rank-1 classification
accuracies over varying gallery and test set sizes.
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Fig. 4: MvsM (left) and SvsAll and MvsAll (right) re-identification accuracy on
CAVIAR.

5.2.2 Multi-shot re-identification performance on CAVIAR

For MvsM re-identification on CAVIAR we performed experiments with M € {2,3,5}
(see figure 4a). Performance begins at 46% accuracy for the NN classification and 55%
for approaches that use group structure in the probe image set. Using 3 images, the NN
baseline reaches an accuracy of 52%, the GroupNN approach reaches 70.6%, while the
CREF reaches 72%. These results can be compared with SDALF performance at 8.5%,
HPE at 7.5% and the CPS performance at 13% for M = 3. Finally, with M =5 the
difference between methods exploiting group structure and those that do not becomes
even more prominent. Nearest neighbor achieves 62.7%, while the GroupNN and CRF
approaches reach 86.9% and 88.4%, respectively. The best state-of-the-art result on
CAVIAR for M =5 is CPS with 17.5%.

5.2.3 Multi-shot re-identification performance on i-LIDS

For the MvsM modality on i-LIDS we only tested M € {2,3} due to the limited number
of images per person. Using M = 2 images, the NN classification yields an accuracy of
41.8%, while GroupNN yields a performance of 48.4% and our CRF approach 47.5%.
The state-of-the-art on this configuration is: 39% for SDALF, 32% for HPE and 44%
for CPS. Using M = 3 images yields only a small improvement as for many identities
in 1-LIDS there are fewer than 6 images. In these cases the gallery and probe image sets
are limited to 2 images. GroupNN outperforms our CRF approach on this dataset due
to the limited number of images per person.
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5.2.4 Summary of multi-shot re-identification results

From these experiments on multi-shot person re-identification it is evident that signifi-
cant improvement is obtained by exploiting group structure in the probe image set. The
simple GroupNN rule and our CRF approach yield similar performance on MvsM re-
identification scenarios on the ETHZ datasets where many images of each person are
available. In combination with the discriminative power of our descriptor, our approach
outperforms the state-of-the-art on the three ETHZ datasets. On the other hand, perfor-
mance gains on the i-LIDS dataset are limited by the low number of images available
for each person in the dataset.

Group structure in the probe image set yields a large boost in multi-shot re-identification
performance also on the CAVIAR dataset, with an improvement of almost 30% be-
tween the simple NN classification and our CRF formulation exploiting group knowl-
edge (note also the large improvement with respect to state-of-the-art methods). This is
likely due to the fact that our approach does not compute mean or aggregate representa-
tions of groups and that our descriptor does not fit complex background or part models
to the resolution limited images in the CAVIAR dataset.

5.3 Identity inference results

To evaluate the performance of our approach in comparison with other state-of-the-
art methods [11, 8, 3], we performed experiments on all datasets using the SvsAll
and MvsAll modalities described above. For the general identity inference case, unlike
MvsM person re-identification, we have no information about relationships between
test images. In the CRF model proposed in section 4 for identity inference, the local
neighbourhood structure is determined by the K nearest neighbours to each image in

feature space. For all experiments we tested K € {2,4,8}. We set A = % in equa-
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Fig. 6: Identity inference results (SvsAll). First row: test image, second row: incorrect
NN result, third row: correct result given by our CRF approach.

tion (1) for the SvsAll and the MvsAll scenarios. Since there may be up to four times
more smoothness terms than unary data cost terms in equation (1), setting A in this way
prevents smoothness from dominating the energy function. In identity inference, gallery
images are randomly selected and all remaining images define the test set. All reported
results are averages over ten trials as before. Results for identity inference are presented
in figures 3b, 3d and 3f for ETHZ, figure 4b for CAVIAR and figure 5b for i-LIDS. We
will now analyze the results for each dataset and then draw general conclusions.

5.3.1 Identity inference results on ETHZ

For the MvsAll configuration on ETHZ we tested M € {2,5,10}.

ETHZ1: On ETHZI1 (figure 3b) we can observe that on the SvsAll modality the NN
baseline using our descriptor yields an accuracy of 69.7%, while SDALF obtains 64.8%.
The CRF approach improves this performance to 72% using 2 neighbours and 73.7%
using 8 neighbours. Using 2 gallery images per person increases CRF results to a rank-1
accuracy ranging from 84.2% to 85.6%. Adding more gallery images yields continued
improvement, reaching 97.7% accuracy with 10 gallery images per person and our CRF
approach with 8 neighbours. Performance of the CRF with different neighbourhood
sizes seems to converge at this point.

ETHZ2: On ETHZ2 (figure 3d), which is the most challenging of the ETHZ datasets,
we can see that performance is slightly lower. The NN classification on the SvsAll
modality obtains an accuracy of 66.9% compared to the SDALF performance of 64.4%,
while our approach yields 69.3% and 71.3% accuracy using, respectively, 2 and 8 neigh-
bours. With 2 gallery images, the gap between the NN baseline (79.5%) and the CRF
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(84%) slightly widens. Using 10 model images, the performances stabilizes at 97.7%
and we observe the same convergence as on ETHZI.

ETHZ3: Finally, on ETHZ3 (figure 3f) the NN baseline and SDALF obtain the same
accuracy of 77%, while the performance of our CRF approach ranges from 79.2% to
81% depending on the neighbourhood size. The performance quickly saturates with a
maximum accuracy of 97.7% using 5 training images and 99% with 10 images.

5.3.2 Identity inference on CAVIAR

Identity inference on the CAVIAR dataset is significantly more challenging than on
ETHZ. We evaluate performance on the SvsAll modality and on MvsAll modalities
for M € {2,3,5} (see figure 4b). With only one gallery images per person, both the
nearest neighbor and CRF approaches yield a rank-1 accuracy of about 30%. This is
significantly higher than the state-of-the-art of about 8% for SDALF, AHPE and CPS,
which is likely due to the simplicity of our descriptor and its robustness to occlusion and
illumination changes. For all MvsAll modalities we note a significant gain in accuracy
when adding more gallery images per person, with performance peaking at about 59%
for the M = 10 case. This demonstrates that our CRF approach is able to effectively
exploit multiple gallery examples.

5.3.3 Identity inference on i-LIDS

Due to the relatively small average number of images per person in the i-LIDS dataset,
we only test the MvsAll modality for M € {2,3}. Results are summarized in figure 5b.
For only one training example per gallery individual, our approach yields a rank-1 ac-
curacy of about 31%, which is comparable to the state-of-the-art result of 28% reported
for SDALF. Adding more examples, as with the CAVIAR dataset, consistently improves
rank-1 performance.

5.3.4 Summary of identity inference results

Using the CRF framework proposed in section 4 clearly improves accuracy over the
simple NN re-identification rule. With our approach it is possible to label a very large
number of probe images using very few gallery images for each person. For example,
on the ETHZ3 dataset we are able to correctly label 1553 out of 1706 test images
using only two model images per person. The robustness of our method with respect
to occlusions and illumination changes is shown in the qualitative results in figure 6.
The CRF approach yields correct labels even in strongly occluded cases thanks to the
neighbourhood edges connecting it to less occluded, yet similar, images. This property
of our descriptor pays off particularly well for the resolution-limited CAVIAR dataset,
for which we outperform the state-of-the-art already for the SvsAll case.
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6 Discussion

In this chapter we introduced the identity inference problem which we propose as a gen-
eralization of the standard person re-identification scenarios described in the literature.
Identity inference can be thought of as a generalization of the single-versus-all person
re-identification modality, and at the same time as a relaxation of the multi-versus-multi
shot case. Instances of identity inference problems do not require hard knowledge about
relationships between test images (e.g. that they correspond to the same individual). We
have also attempted to formalize the specification of person re-identification and iden-
tity inference modalities through the introduction of a set-theoretic notation for precise
definition of scenarios. This notation is useful in that it establishes a common, unam-
biguous language for talking about person re-identification problems.

We also proposed a CRF-based approach to solving identity inference problems.
Using feature space similarity to define the neighbourhood topology in the CREF, our
approach is able to exploit the soft-grouping structure present in feature space rather
than requiring explicit group information as in classical MvsM person re-identification.
Our experimental results show that the CRF approach can efficiently solve standard
re-identification tasks, achieving classification performance beyond the state-of-the-art
rank-1 results in the literature. The CRF model can also be used to solve more general
identity inference problems in which no hard grouping information and very many test
images are present in the probe set.

It is our opinion that in practice it is almost always more common to have many
more unlabeled images than labeled ones, and thus that the standard MvsM formulation
is unrealistic for most application scenarios. Further exploration of identity inference
requires datasets containing many images of many persons imaged from many cameras.
Most standard datasets like CAVIAR and i-LIDS are very limited in this regard.
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