ADAPTIVE STRUCTURED POOLING FOR ACTION RECOGNITION

Svebor Karaman, Lorenzo Seidenari, Shugao Ma, Alberto Del Bimbo, Stan Sclaroff

{svebor.karaman,lorenzo.seidenari,alberto.delbimbo}@unifi.it
{shugaoma, sclaroff}@bu.edu

OBJECTIVES

What do we want to do?

- Find coherent spatio-temporal regions in video
- Build a structured representation of a video

How do we do it?

- Cluster HSTS [4] according to their overlap
- Define soft pooling regions from each cluster
- Link overlapping clusters in a graph structure
- Graphs comparison with GraphHopper kernel [1]

ADAPTIVE SPATIO-TEMPORAL STRUCTURED REPRESENTATION OF VIDEO

HSTS

- Hierarchical Space-Time Segments (HSTS) represent spatio-temporal dynamic portions of a video preserv-ing both moving and static relevant regions
- Obtained by a hierarchical segmentation relying both on image and motion and short term tracking, see [4]

SOFT POOLING WEIGHTS

Weighted pooling map M_k by accumulating, in each frame *t* at each position *p*, segments of a HSTS set S_k :

$$M_k^t = \sum_{s \in \mathcal{S}_k^t} \Psi_s$$
 ,

where $s \in S_k^t$ and $\Psi_s(p) = 1$ if $p \in s$ and $\Psi_s(p) = 0$ otherwise. M_k^t is L1-normalized and square-rooted. For a video of T frames:

 $M_k(x, y, t) = \left\{ M_k^1(x, y) \dots M_k^T(x, y) \right\}$

For each feature $x_m \in X$, with $(x_{x_m}, y_{x_m}, t_{x_m})$ as spatiotemporal coordinates of its centroid, weight w_m^k as a lo-

cal integral of the pooling map M_k :

 $w_m^k = \int_{x_{x_m} - v_x}^{x_{x_m} + v_x} \int_{y_{x_m} - v_y}^{y_{x_m} + v_y} \int_{t_{x_m} - v_t}^{t_{x_m} + v_t} M_k(x, y, t) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}t$

SOFT FISHER ENCODING

Given the GMM $u_{\lambda} = \sum_{n=1}^{N} \omega_n u_n(x; \mu_n, \sigma_n)$ and the M features of X, mean $\mathcal{G}_n^{\mu}(X)$ and covariance elements $\mathcal{G}_n^{\sigma}(X)$ of a Fisher vector for each u_n :

 $\mathcal{G}_{n}^{\mu}(X) = \frac{1}{\sqrt{\omega_{n}}} \sum_{m=1}^{M} w_{m} \gamma_{n}(x_{m}) \left(\frac{x_{m} - \mu_{n}}{\sigma_{n}}\right),$ $\mathcal{G}_{n}^{\sigma}(X) = \frac{1}{\sqrt{2\omega_{n}}} \sum_{m=1}^{M} w_{m} \gamma_{n}(x_{m}) \left(\frac{(x_{m} - \mu_{n})^{2}}{\sigma_{n}^{2}} - 1\right),$

where $\gamma_n(x_m)$ is the posterior probability of the feature x_m for the component *n* of the GMM.

ST STRUCTURED POOLING

The affinity $A(s_i, s_j)$ of two segments s_i (alive from t_{is} to t_{ie}) and s_j (alive from t_{js} to t_{je}) is:

 $A(s_i, s_j) = \frac{1}{\min_l} \sum_{t \in [\max_s, \min_e]} \frac{s_i^t \cap s_j^t}{s_i^t \cup s_j^t}.$

Weighted trajectories for exemplar active nodes on a subset of frames for action "kiss" and "handshake".

RESULTS

UCF Sports

HighFive

CONCLUSIONS

• Structured representation adaptive to video content that does not rely on fixed partition of space or time

- where $min_l = min(t_{ie} t_{is}, t_{je} t_{js})$, $max_s = max(t_{is}, t_{js})$ and $min_e = min(t_{ie}, t_{je})$.
- Multiple runs of normalized cut on affinity matrix *A* to obtain different number of segments clusters
- Each cluster is a node in the graph, soft pooling of dense trajectories features as attribute
- Link between clusters having overlapping segments

	r		0	
Method	LOO	Split [3]	Method	mAP
Our (all features)	90.4	90.8	Our (all features)	65.4
Our (MBH only)	88.3	90.0	Our (MBH only)	62.8
FVB (all features)	88.6	89.4	FVB (all features)	61.3
Lan <i>et al</i> .	83.7	73.1	Gaidon <i>et al.</i> [2]	62.4
Kovashka <i>et al.</i>	87.3	-	Ma <i>et al.</i> [4]	53.3
Klaser <i>et al.</i>	86.7	-	Wang <i>et al</i> .	53.4
Wang <i>et al</i> .	_	85.2	Laptev <i>et al</i> .	36.9
Ma <i>et al</i> . [4]	_	81.7	Patron-Perez <i>et al</i> .	42.4

- Unsupervised procedure to generate a structured representation of the video
- Jointly models the hierarchical and spatio-temporal relationship without imposing a strict hierarchy
- Significant improvement over the state-of-the-art on two standard datasets

REFERENCES

[1] Aasa Feragen, Niklas Kasenburg, Jens Petersen, Marleen de Bruijne, and Karsten Borgwardt. Scalable kernels for graphs with continuous attributes. In Advances in Neural Information Processing Systems, pages 216–224, 2013.

[2] Adrien Gaidon, Zaid Harchaoui, and Cordelia Schmid. Activity representation with motion hierarchies. *International Journal of Computer Vision*, pages 1–20, 2013.

[3] Tian Lan, Yang Wang, and Greg Mori. Discriminative figure-centric models for joint action localization. In Proc. of International Conference on Computer Vision (ICCV), pages 2003–2010. IEEE, 2011.

[4] Shugao Ma, Jianming Zhang, Nazli Ikizler-Cinbis, and Stan Sclaroff. Action recognition by hierarchical space-time segments. In Proc. of International Conference on Computer Vision (ICCV). IEEE, 2013.